Godoy Eduardo, Mellado Diego, de Ferrari Joaquin, Querales Marvin, Saez Alex, Chabert Steren, Parra Denis, Salas Rodrigo
PhD program in Applied Informatics Engineering, School of Informatics Engineering, Universidad de Valparaíso, Valparaíso, Chile.
Center of Interdisciplinary Biomedical and Engineering Research for Health - MEDING, Universidad de Valparaíso, Valparaíso, Chile.
Comput Struct Biotechnol J. 2025 Jul 16;27:3229-3239. doi: 10.1016/j.csbj.2025.07.018. eCollection 2025.
Breast cancer remains a significant health concern for women at various stages of life, impacting both productivity and reproductive health. Recent advancements in deep learning (DL) have enabled substantial progress in the automation of radiological reports, offering potential support to radiologists and streamlining examination processes. This study introduces a framework for automated clinical text generation aimed at assisting radiologists in mammography examinations. Rather than replacing medical expertise, the system provides pre-processed evidence and automatic diagnostic suggestions for radiologist validation. The framework leverages an encoder-decoder architecture for natural language generation (NLG) models, trained and fine-tuned on a corpus of Spanish radiological text. Additionally, we incorporate an image intensity enhancement technique to address the issue of image quality variability and assess its impact on report generation outcomes. A comparative analysis using NLG metrics is conducted to identify the optimal feature extraction method. Furthermore, named entity recognition (NER) techniques are employed to extract key clinical concepts and automate precision evaluations. Our results demonstrate that the proposed framework could be a solid starting point for systematizing and implementing automated clinical report generation based on medical images.
乳腺癌仍然是处于不同人生阶段女性的重大健康问题,对生产力和生殖健康都会产生影响。深度学习(DL)的最新进展已在放射学报告自动化方面取得了重大进展,为放射科医生提供了潜在支持,并简化了检查流程。本研究介绍了一个用于自动生成临床文本的框架,旨在协助放射科医生进行乳房X光检查。该系统并非取代医学专业知识,而是提供经过预处理的证据和自动诊断建议以供放射科医生验证。该框架利用编码器-解码器架构构建自然语言生成(NLG)模型,并在西班牙放射学文本语料库上进行训练和微调。此外,我们采用图像强度增强技术来解决图像质量变化问题,并评估其对报告生成结果的影响。使用NLG指标进行比较分析,以确定最佳特征提取方法。此外,采用命名实体识别(NER)技术提取关键临床概念并实现精准评估自动化。我们的结果表明,所提出的框架可能是系统化和实施基于医学图像的自动临床报告生成的坚实起点。