Atalik Arda, Chopra Sumit, Sodickson Daniel K
IEEE Trans Med Imaging. 2025 Jul 31;PP. doi: 10.1109/TMI.2025.3594363.
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust-Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.
减少磁共振成像(MRI)扫描时间可以改善患者护理并降低医疗成本。许多加速方法旨在通过不适定或病态的线性逆问题(LIP)从稀疏的k空间数据重建诊断质量的图像。为了解决由此产生的模糊性,将先验知识纳入优化问题至关重要,例如以正则化的形式。另一种在医学成像中较少使用的先验知识形式是从当前采集之外的来源获得的现成辅助数据(又称边信息)。在本文中,我们提出了信任引导变分网络(TGVN),这是一个端到端的深度学习框架,可有效且可靠地将边信息集成到线性逆问题中。我们展示了它在多线圈、多对比度MRI重建中的有效性,其中来自一个对比度的不完整或低信噪比测量用作边信息,以从严重欠采样的数据重建另一个对比度的高质量图像。TGVN在不同的对比度、解剖结构和场强下都很稳健。与利用边信息的基线相比,TGVN即使在具有挑战性的加速水平下也能实现卓越的图像质量,同时保留细微的病理特征,在将幻觉最小化的同时大幅加快采集速度。源代码和数据集划分可在github.com/sodicksonlab/TGVN上获取。