Stolp Wiebe, van Assche Frederic, Tang Ruizhi, Desplenter Karel, Castelblanco Caori Organista, Ziesche Ralf, Cipiccia Silvia, Batey Darren, Boone Matthieu N
Ghent University, UGCT-RP, Department of Physics and Astronomy, Ghent 9000, Belgium.
Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
Phys Rev Lett. 2025 Jun 27;134(25):257001. doi: 10.1103/kbrf-gb9c.
X-ray ptychography is a robust microscopy technique with nanoscale resolution that requires a spatially and temporally coherent illumination. In a typical setup, the temporal coherence requirements are satisfied by monochromating the x-ray source, e.g., using a crystal monochromator. Recent studies have shown that energy resolving, or hyperspectral, detectors can to some extent replace the role of the monochromator to perform, e.g., edge-subtraction ptychographic imaging with broadband radiation in a single acquisition. Scaling this capability from two dimensions (2D) to three dimensions (3D), and from a single absorption edge to multiple edges, is critical for its applications in structural and elemental characterisation. The method is hitherto limited by the inherently lower maximum count rate of hyperspectral detectors and the chromaticity of the optics often used in x-ray ptychography experiments, namely Fresnel zone plates. In this work, we design an optimized broadband spectroscopic ptychography setup and use it to perform 3D hyperspectral imaging of particles of battery material containing various percentages of nickel, manganese, cobalt (NMC). We show that we can identify different compositions based on their spectral response. We discuss the results and provide guidelines for future exploitation of the method in laboratory settings.
X射线叠层成像术是一种具有纳米级分辨率的强大显微镜技术,需要空间和时间上的相干照明。在典型的设置中,通过对X射线源进行单色化来满足时间相干性要求,例如使用晶体单色仪。最近的研究表明,能量分辨或高光谱探测器在一定程度上可以取代单色仪的作用,例如在单次采集时利用宽带辐射进行边缘减法叠层成像。将这种能力从二维(2D)扩展到三维(3D),并从单个吸收边扩展到多个边,对于其在结构和元素表征中的应用至关重要。该方法迄今受到高光谱探测器固有的较低最大计数率以及X射线叠层成像实验中常用光学元件(即菲涅耳波带片)的色度的限制。在这项工作中,我们设计了一种优化的宽带光谱叠层成像设置,并使用它对含有不同百分比镍、锰、钴(NMC)的电池材料颗粒进行三维高光谱成像。我们表明,我们可以根据它们的光谱响应识别不同的成分。我们讨论了结果,并为该方法在实验室环境中的未来应用提供了指导。