Fernández-López Pol, Oro Daniel, Lloret-Cabot Roger, Genovart Meritxell, Garriga Joan, Bartumeus Frederic
Department of Ecology and Complexity, Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas, Blanes 17300, Spain.
Université de Tolouse, Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Tolouse 31062, France.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2506930122. doi: 10.1073/pnas.2506930122. Epub 2025 Jul 31.
Liquid brains conceptualize living systems that operate without central control, where collective outcomes emerge from local and dynamic interactions. This concept extends beyond ants and other social insects to include immune systems, slime molds, and microbiomes. In such systems, connectivity scales with population density, facilitating more efficient information transfer as group size increases. However, in sparse conditions, where fewer individuals interact, movement likely plays a crucial role in shaping connectivity, ensuring optimal collective efficiency. We tested this hypothesis during the foraging process of , an ant species that does not primarily rely on chemical communication. We empirically measured ant movement behavior and characterized their foraging dynamics across large spatiotemporal scales, closely reflecting the species' natural ecology. Integrating observed movement heterogeneity into a neuronal-like model, we quantitatively replicated ants foraging efficiency and spatiotemporal dynamics. Our results reveal that a simple feedback mechanism, mediated by local interactions, governs the foraging patterns of . Such feedback is modulated by adjusting the proportion of two coexisting movement behaviors: recruits, which facilitated information transfer and food exploitation by aggregating closely to the nest and the food patches, and scouts, which could bypass this feedback and discover alternative food sources. Therefore, distinct movement patterns contributed differently to optimizing each phase of the foraging process, proving an adaptive mechanism to balance exploration and exploitation. Our findings underscore how incorporating specific biologically grounded insights into complex systems frameworks, enhances our understanding of the mechanisms underlying collective intelligence in biological systems.
液态大脑概念化了那些无需中央控制就能运行的生命系统,在这些系统中,集体结果源自局部和动态的相互作用。这一概念不仅适用于蚂蚁和其他群居昆虫,还包括免疫系统、黏菌和微生物群落。在这样的系统中,连接性随着种群密度而变化,随着群体规模的增加,促进了更高效的信息传递。然而,在个体互动较少的稀疏条件下,移动可能在塑造连接性方面发挥关键作用,以确保最佳的集体效率。我们在一种主要不依赖化学通讯的蚂蚁物种的觅食过程中测试了这一假设。我们通过实证测量了蚂蚁的移动行为,并在大时空尺度上刻画了它们的觅食动态,这紧密反映了该物种的自然生态。将观察到的移动异质性整合到一个类似神经元的模型中,我们定量地复制了蚂蚁的觅食效率和时空动态。我们的结果表明,一种由局部相互作用介导的简单反馈机制,控制着该物种的觅食模式。这种反馈通过调整两种共存移动行为的比例来调节:招募者,它们通过紧密聚集在巢穴和食物斑块附近来促进信息传递和食物获取;探索者,它们可以绕过这种反馈并发现替代食物来源。因此,不同的移动模式对优化觅食过程的每个阶段有不同的贡献,证明了一种平衡探索和利用的适应性机制。我们的发现强调了将特定的基于生物学的见解纳入复杂系统框架如何增强我们对生物系统中集体智能潜在机制的理解。