1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra , 08003 Barcelona , Spain.
2 Institut de Biologia Evolutiva (CSIC-UPF) , Psg Maritim Barceloneta, 37, 08003 Barcelona , Spain.
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180376. doi: 10.1098/rstb.2018.0376.
Liquid neural networks (or 'liquid brains') are a widespread class of cognitive living networks characterized by a common feature: the agents (ants or immune cells, for example) move in space. Thus, no fixed, long-term agent-agent connections are maintained, in contrast with standard neural systems. How is this class of systems capable of displaying cognitive abilities, from learning to decision-making? In this paper, the collective dynamics, memory and learning properties of liquid brains is explored under the perspective of statistical physics. Using a comparative approach, we review the generic properties of three large classes of systems, namely: standard neural networks (solid brains), ant colonies and the immune system. It is shown that, despite their intrinsic physical differences, these systems share key properties with standard neural systems in terms of formal descriptions, but strongly depart in other ways. On one hand, the attractors found in liquid brains are not always based on connection weights but instead on population abundances. However, some liquid systems use fluctuations in ways similar to those found in cortical networks, suggesting a relevant role for criticality as a way of rapidly reacting to external signals. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
液体神经网络(或“液体大脑”)是一类广泛存在的认知生命网络,其特征为一个共同的特点:即其中的智能体(例如蚂蚁或免疫细胞)在空间中移动。因此,与标准神经网络不同,这些网络不会维持固定的、长期的智能体-智能体连接。在本文中,我们从统计物理学的角度探讨了液体大脑的集体动力学、记忆和学习特性。通过对比的方法,我们回顾了标准神经网络(固体大脑)、蚁群和免疫系统这三大类系统的通用特性。结果表明,尽管这些系统在本质上存在差异,但它们在形式描述方面与标准神经网络具有关键的共同特性,而在其他方面则存在很大的不同。一方面,在液体大脑中发现的吸引子并不总是基于连接权重,而是基于群体丰度。然而,一些液体系统以类似于皮质网络中发现的方式利用波动,这表明临界性作为一种快速对外界信号做出反应的方式具有重要作用。本文是主题为“液体大脑、固体大脑:分布式认知架构如何处理信息”的一部分。