Suppr超能文献

液体大脑的统计物理学。

Statistical physics of liquid brains.

机构信息

1 ICREA-Complex Systems Lab, Universitat Pompeu Fabra , 08003 Barcelona , Spain.

2 Institut de Biologia Evolutiva (CSIC-UPF) , Psg Maritim Barceloneta, 37, 08003 Barcelona , Spain.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180376. doi: 10.1098/rstb.2018.0376.

Abstract

Liquid neural networks (or 'liquid brains') are a widespread class of cognitive living networks characterized by a common feature: the agents (ants or immune cells, for example) move in space. Thus, no fixed, long-term agent-agent connections are maintained, in contrast with standard neural systems. How is this class of systems capable of displaying cognitive abilities, from learning to decision-making? In this paper, the collective dynamics, memory and learning properties of liquid brains is explored under the perspective of statistical physics. Using a comparative approach, we review the generic properties of three large classes of systems, namely: standard neural networks (solid brains), ant colonies and the immune system. It is shown that, despite their intrinsic physical differences, these systems share key properties with standard neural systems in terms of formal descriptions, but strongly depart in other ways. On one hand, the attractors found in liquid brains are not always based on connection weights but instead on population abundances. However, some liquid systems use fluctuations in ways similar to those found in cortical networks, suggesting a relevant role for criticality as a way of rapidly reacting to external signals. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.

摘要

液体神经网络(或“液体大脑”)是一类广泛存在的认知生命网络,其特征为一个共同的特点:即其中的智能体(例如蚂蚁或免疫细胞)在空间中移动。因此,与标准神经网络不同,这些网络不会维持固定的、长期的智能体-智能体连接。在本文中,我们从统计物理学的角度探讨了液体大脑的集体动力学、记忆和学习特性。通过对比的方法,我们回顾了标准神经网络(固体大脑)、蚁群和免疫系统这三大类系统的通用特性。结果表明,尽管这些系统在本质上存在差异,但它们在形式描述方面与标准神经网络具有关键的共同特性,而在其他方面则存在很大的不同。一方面,在液体大脑中发现的吸引子并不总是基于连接权重,而是基于群体丰度。然而,一些液体系统以类似于皮质网络中发现的方式利用波动,这表明临界性作为一种快速对外界信号做出反应的方式具有重要作用。本文是主题为“液体大脑、固体大脑:分布式认知架构如何处理信息”的一部分。

相似文献

1
Statistical physics of liquid brains.液体大脑的统计物理学。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180376. doi: 10.1098/rstb.2018.0376.
2
Liquid brains, solid brains.液体大脑,固体大脑。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20190040. doi: 10.1098/rstb.2019.0040.
3
How does mobility help distributed systems compute?移动性如何帮助分布式系统计算?
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180375. doi: 10.1098/rstb.2018.0375.
4
Homeostasis as a fundamental principle for a coherent theory of brains.作为大脑连贯理论的基本原则的内稳态。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180373. doi: 10.1098/rstb.2018.0373.
6
Neural architectures for robot intelligence.用于机器人智能的神经架构。
Rev Neurosci. 2003;14(1-2):121-43. doi: 10.1515/revneuro.2003.14.1-2.121.
7
Evolutionary aspects of reservoir computing.储层计算的进化方面。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180377. doi: 10.1098/rstb.2018.0377.

引用本文的文献

1
Foraging ants as liquid brains: Movement heterogeneity shapes collective efficiency.觅食蚂蚁如同流动的大脑:运动异质性塑造集体效率。
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2506930122. doi: 10.1073/pnas.2506930122. Epub 2025 Jul 31.
2
Metareview: a survey of active matter reviews.元综述:活性物质综述调查
Eur Phys J E Soft Matter. 2025 Mar 4;48(3):12. doi: 10.1140/epje/s10189-024-00466-z.
3
Fundamental constraints to the logic of living systems.生命系统逻辑的基本限制因素。
Interface Focus. 2024 Oct 25;14(5):20240010. doi: 10.1098/rsfs.2024.0010. eCollection 2024 Oct 11.
9
The Neglected Pieces of Designing Collective Decision-Making Processes.设计集体决策过程中被忽视的部分。
Front Robot AI. 2019 Mar 26;6:16. doi: 10.3389/frobt.2019.00016. eCollection 2019.
10
Fate of Duplicated Neural Structures.重复神经结构的命运。
Entropy (Basel). 2020 Aug 25;22(9):928. doi: 10.3390/e22090928.

本文引用的文献

2
On Having No Head: Cognition throughout Biological Systems.《论无头:生物系统中的认知》
Front Psychol. 2016 Jun 21;7:902. doi: 10.3389/fpsyg.2016.00902. eCollection 2016.
3
Self-organized criticality as a fundamental property of neural systems.自组织临界性作为神经系统的基本属性。
Front Syst Neurosci. 2014 Sep 23;8:166. doi: 10.3389/fnsys.2014.00166. eCollection 2014.
6
Cognition in insects.昆虫认知。
Philos Trans R Soc Lond B Biol Sci. 2012 Oct 5;367(1603):2715-22. doi: 10.1098/rstb.2012.0218.
8
A thermodynamic perspective of immune capabilities.免疫能力的热力学视角。
J Theor Biol. 2011 Oct 21;287:48-63. doi: 10.1016/j.jtbi.2011.07.027. Epub 2011 Aug 3.
9
On optimal decision-making in brains and social insect colonies.关于大脑和社会性昆虫群体中的最优决策。
J R Soc Interface. 2009 Nov 6;6(40):1065-74. doi: 10.1098/rsif.2008.0511. Epub 2009 Feb 25.
10
Modelling and analysis of gene regulatory networks.基因调控网络的建模与分析
Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80. doi: 10.1038/nrm2503. Epub 2008 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验