Teng Dong, Shi Chuting, Zhang Jiaqi, Zhang Huihui, Zhang Yongjun, Liu Zewen
State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China; Key Laboratory of Biohazard Monitoring and Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
Pestic Biochem Physiol. 2025 Sep;213:106531. doi: 10.1016/j.pestbp.2025.106531. Epub 2025 Jun 27.
Nilaparvata lugens (brown planthopper, BPH) and Laodelphax striatellus (small brown planthopper, SBPH) are two planthoppers pests on rice, and can direct metabolize neonicotinoid through detoxification by P450s. Previous studies demonstrated that NlCYP6ER1, NlCYP4CE1, NlCYP6CW1 and NlCYP6AY1 were constitutively overexpressed in neonicotinoid-resistant BPH strains, contributing to neonicotinoid metabolism. However, the homologous genes, LsCYP6ER1, LsCYP4CE1 and LsCYP6CW1, in SBPH were not over-expressed in populations with higher resistance ratios to neonicotinoids. The only exception was LsCYP6AY3, which was confirmed to hydroxylate imidacloprid. Similarly in this study, the expression of LsCYP6ER2, LsCYP4CE2 and LsCYP6CW1 were not significantly different among SBPH field populations. Nevertheless, RNAi against LsCYP6ER2, LsCYP6CW1 and LsCYP4CE2 obviously increased imidacloprid and nitenpyram toxicity to SBPH. The recombinant LsCYP6ER2, LsCYP6CW1 and LsCYP4CE2 all possessed the capability to metabolize imidacloprid and nitenpyram. All three P450s metabolized imidacloprid into a major metabolite, 4/5-OH imidacloprid. Recombinant LsCYP6ER2 and LsCYP6CW1 metabolized nitenpyram into one major metabolite (N-desmethyl nitenpyram), while LsCYP4CE2 metabolism got two major metabolites, hydroxy nitenpyram and N-desmethyl nitenpyram. The results demonstrated that LsCYP6ER2, LsCYP4CE2 and LsCYP6CW1 metabolized neonicotinoids to achieve a basal tolerance. That means the conservation of catalytic function in homologous P450s among species was not directly related to its role in insecticide resistance, whose gene overexpression in resistant insects is an essential. Taken together, the work provides new insights into mechanisms of metabolic function of insect P450s, especially in two closely related insect species.
褐飞虱(Nilaparvata lugens,BPH)和灰飞虱(Laodelphax striatellus,SBPH)是水稻上的两种飞虱害虫,它们可以通过P450s的解毒作用直接代谢新烟碱类杀虫剂。先前的研究表明,NlCYP6ER1、NlCYP4CE1、NlCYP6CW1和NlCYP6AY1在对新烟碱类杀虫剂具有抗性的褐飞虱品系中组成型过表达,有助于新烟碱类杀虫剂的代谢。然而,灰飞虱中的同源基因LsCYP6ER1、LsCYP4CE1和LsCYP6CW1在对新烟碱类杀虫剂抗性比率较高的种群中并未过表达。唯一的例外是LsCYP6AY3,它被证实可使吡虫啉羟基化。同样在本研究中,LsCYP6ER2、LsCYP4CE2和LsCYP6CW1在灰飞虱田间种群中的表达没有显著差异。然而,针对LsCYP6ER2、LsCYP6CW1和LsCYP4CE2的RNA干扰明显增加了吡虫啉和烯啶虫胺对灰飞虱的毒性。重组的LsCYP6ER2、LsCYP6CW1和LsCYP4CE2均具有代谢吡虫啉和烯啶虫胺的能力。所有这三种P450s都将吡虫啉代谢为一种主要代谢物,即4/5-羟基吡虫啉。重组的LsCYP6ER2和LsCYP6CW1将烯啶虫胺代谢为一种主要代谢物(N-去甲基烯啶虫胺),而LsCYP4CE2的代谢产生两种主要代谢物,羟基烯啶虫胺和N-去甲基烯啶虫胺。结果表明,LsCYP6ER2、LsCYP4CE2和LsCYP6CW1代谢新烟碱类杀虫剂以实现基础耐受性。这意味着物种间同源P450s催化功能的保守性与其在抗药性中的作用没有直接关系,其在抗性昆虫中的基因过表达是至关重要的。综上所述,这项工作为昆虫P450s的代谢功能机制提供了新的见解,尤其是在两种密切相关的昆虫物种中。