Zhang Di, Li Min, Aslam Mehtab Muhammad, Huang Mingkun, Chen Mo-Xian, Liu Ying-Gao, Zhang Jianhua
State Key Laboratory of Green Pesticide, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550000, China.
State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
Plant Physiol. 2025 Aug 4;198(4). doi: 10.1093/plphys/kiaf335.
Splicing factor 30 (SPF30) is a pivotal spliceosomal protein in human pre-mRNA splicing; however, its function in plants remains unclear. Previously, we identified the SPF30 genes throughout the plant kingdom and found that they have a conserved second intron that undergoes frequent alternative splicing (AS). In this study, we characterized SPF30 and its various alternative isoforms in Arabidopsis (Arabidopsis thaliana). Loss-of-function mutation in SPF30 caused early flowering and impaired expression and splicing of the floral repressor FLOWERING LOCUS C (FLC). Subsequent genetic and molecular analyses further suggested that SPF30 may regulate floral transition mostly through FLC. The primary transcript, SPF30.1, encodes a functional splicing factor associated with spliceosomal core proteins, while isoforms retaining a partial fragment of the second intron are subjected to nonsense-mediated mRNA decay (NMD). Moreover, a long, NMD-immune isoform with the entire second intron retained can be further processed to either SPF30.1 or NMD-sensitive isoforms, potentially enabling the fine-tuning of SPF30 expression post-transcriptionally. Analysis of the addition and deletion of the second intron further indicated that it negatively controls SPF30 function. Our results highlight the critical role of SPF30 as a plant splicing factor involved in floral transition and propose a mechanism for the regulation of SPF30 itself via AS.
剪接因子30(SPF30)是人类前体mRNA剪接过程中的一种关键剪接体蛋白;然而,其在植物中的功能仍不清楚。此前,我们在整个植物界鉴定了SPF30基因,发现它们有一个保守的第二个内含子,该内含子经常发生可变剪接(AS)。在本研究中,我们对拟南芥中的SPF30及其各种可变异构体进行了表征。SPF30功能缺失突变导致早花,并损害了花抑制因子开花位点C(FLC)的表达和剪接。随后的遗传和分子分析进一步表明,SPF30可能主要通过FLC调节开花转变。初级转录本SPF30.1编码一种与剪接体核心蛋白相关的功能性剪接因子,而保留第二个内含子部分片段的异构体则会经历无义介导的mRNA降解(NMD)。此外,保留整个第二个内含子的长链、对NMD免疫的异构体可以进一步加工成SPF30.1或对NMD敏感的异构体,这可能在转录后对SPF30的表达进行微调。对第二个内含子的添加和缺失分析进一步表明,它对SPF30功能起负调控作用。我们的结果突出了SPF30作为参与开花转变的植物剪接因子的关键作用,并提出了一种通过可变剪接调节SPF30自身的机制。