Suppr超能文献

条件通用微分方程描述了C肽产生中的群体动态和个体间差异。

Conditional universal differential equations capture population dynamics and interindividual variation in c-peptide production.

作者信息

de Rooij Max, van Riel Natal A W, O'Donovan Shauna D

机构信息

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Eindhoven Artificial Intelligence Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

NPJ Syst Biol Appl. 2025 Jul 31;11(1):84. doi: 10.1038/s41540-025-00570-6.

Abstract

Universal differential equations (UDEs) are an emerging approach in biomedical systems biology, integrating physiology-driven mathematical models with machine learning for data-driven model discovery in areas where knowledge of the underlying physiology is limited. However, current approaches to training UDEs do not directly accommodate heterogeneity in the underlying data. As a data-driven approach, UDEs are also vulnerable to overfitting and consequently cannot sufficiently generalize to heterogeneous populations. We propose a conditional UDE (cUDE) where we assume that the structure and weights of the embedded neural network are common across individuals, and introduce a conditioning parameter that is allowed to vary between individuals. In this way, the cUDE architecture can accommodate inter-individual variation in data while learning a generalizable network representation. We demonstrate the effectiveness of the cUDE as an extension of the UDE framework by training a cUDE model of c-peptide production. We show that our cUDE model can accurately describe postprandial c-peptide levels in individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Furthermore, we show that the conditional parameter captures relevant inter-individual variation. Subsequently, we use symbolic regression to derive a generalizable analytical expression for c-peptide production.

摘要

通用微分方程(UDEs)是生物医学系统生物学中一种新兴的方法,它将生理学驱动的数学模型与机器学习相结合,用于在基础生理学知识有限的领域进行数据驱动的模型发现。然而,当前训练UDEs的方法并不能直接适应基础数据中的异质性。作为一种数据驱动的方法,UDEs也容易出现过拟合,因此不能充分推广到异质群体。我们提出了一种条件UDE(cUDE),我们假设嵌入神经网络的结构和权重在个体之间是通用的,并引入一个允许在个体之间变化的条件参数。通过这种方式,cUDE架构可以在学习可推广的网络表示的同时适应数据中的个体间差异。我们通过训练一个c肽产生的cUDE模型,证明了cUDE作为UDE框架扩展的有效性。我们表明,我们的cUDE模型可以准确描述糖耐量正常、糖耐量受损和2型糖尿病个体的餐后c肽水平。此外,我们表明条件参数捕获了相关的个体间差异。随后,我们使用符号回归来推导c肽产生的可推广解析表达式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/575e/12313987/8781fd6b6fc8/41540_2025_570_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验