文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Subclassification of obesity for precision prediction of cardiometabolic diseases.

作者信息

Coral Daniel E, Smit Femke, Farzaneh Ali, Gieswinkel Alexander, Tajes Juan Fernandez, Sparsø Thomas, Delfin Carl, Bauvin Pierre, Wang Kan, Temprosa Marinella, De Cock Diederik, Blanch Jordi, Fernández-Real José Manuel, Ramos Rafael, Ikram M Kamran, Gomez Maria F, Kavousi Maryam, Panova-Noeva Marina, Wild Philipp S, van der Kallen Carla, Adriaens Michiel, van Greevenbroek Marleen, Arts Ilja, Le Roux Carel, Ahmadizar Fariba, Frayling Timothy M, Giordano Giuseppe N, Pearson Ewan R, Franks Paul W

机构信息

Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Helsingborg, Sweden.

Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.

出版信息

Nat Med. 2025 Feb;31(2):534-543. doi: 10.1038/s41591-024-03299-7. Epub 2024 Oct 24.


DOI:10.1038/s41591-024-03299-7
PMID:39448862
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11835733/
Abstract

Obesity and cardiometabolic disease often, but not always, coincide. Distinguishing subpopulations within which cardiometabolic risk diverges from the risk expected for a given body mass index (BMI) may facilitate precision prevention of cardiometabolic diseases. Accordingly, we performed unsupervised clustering in four European population-based cohorts (N ≈ 173,000). We detected five discordant profiles consisting of individuals with cardiometabolic biomarkers higher or lower than expected given their BMI, which generally increases disease risk, in total representing ~20% of the total population. Persons with discordant profiles differed from concordant individuals in prevalence and future risk of major adverse cardiovascular events (MACE) and type 2 diabetes. Subtle BMI-discordances in biomarkers affected disease risk. For instance, a 10% higher probability of having a discordant lipid profile was associated with a 5% higher risk of MACE (hazard ratio in women 1.05, 95% confidence interval 1.03, 1.06, P = 4.19 × 10; hazard ratio in men 1.05, 95% confidence interval 1.04, 1.06, P = 9.33 × 10). Multivariate prediction models for MACE and type 2 diabetes performed better when incorporating discordant profile information (likelihood ratio test P < 0.001). This enhancement represents an additional net benefit of 4-15 additional correct interventions and 37-135 additional unnecessary interventions correctly avoided for every 10,000 individuals tested.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/a0da93c5e3e8/41591_2024_3299_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/e2dfadce77dc/41591_2024_3299_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/179b7221e324/41591_2024_3299_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/1ae3d1ee6dd3/41591_2024_3299_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/7e7187d1c109/41591_2024_3299_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/c267c44fee6f/41591_2024_3299_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/98cb897cbbf1/41591_2024_3299_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/70aea20b991c/41591_2024_3299_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/6476bd50ef7f/41591_2024_3299_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/1d20bc61a293/41591_2024_3299_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/a0da93c5e3e8/41591_2024_3299_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/e2dfadce77dc/41591_2024_3299_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/179b7221e324/41591_2024_3299_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/1ae3d1ee6dd3/41591_2024_3299_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/7e7187d1c109/41591_2024_3299_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/c267c44fee6f/41591_2024_3299_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/98cb897cbbf1/41591_2024_3299_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/70aea20b991c/41591_2024_3299_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/6476bd50ef7f/41591_2024_3299_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/1d20bc61a293/41591_2024_3299_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ece/11835733/a0da93c5e3e8/41591_2024_3299_Fig10_ESM.jpg

相似文献

[1]
Subclassification of obesity for precision prediction of cardiometabolic diseases.

Nat Med. 2025-2

[2]
BMI-residualized data uncovers a cluster of people with type 2 diabetes and increased serum ferritin protected from cardiovascular disease.

Cardiovasc Diabetol. 2025-3-26

[3]
H-NMR metabolomics identifies three distinct metabolic profiles differentially associated with cardiometabolic risk in patients with obesity in the Di@bet.es cohort.

Cardiovasc Diabetol. 2024-11-7

[4]
Association of body mass index and its long-term changes with cardiometabolic diseases: A nationwide twin study.

Clin Nutr. 2021-11

[5]
Obesity misclassification and the metabolic syndrome in adults with functional mobility impairments: Nutrition Examination Survey 2003-2006.

Prev Med. 2013-12-18

[6]
Severity of obesity and cardiometabolic risk factors in adults: Sex differences and role of physical activity. The HERMEX study.

Int J Cardiol. 2016-11-15

[7]
Body mass index and incident cardiometabolic conditions in relation to obesity-related cancer risk: A population-based cohort study in Catalonia, Spain.

Cancer Med. 2023-10

[8]
Childhood cardiometabolic outcomes of maternal obesity during pregnancy: the Generation R Study.

Hypertension. 2013-12-30

[9]
Increasing adiposity and the presence of cardiometabolic morbidity is associated with increased Covid-19-related mortality: results from the UK Biobank.

BMC Endocr Disord. 2021-7-3

[10]
LEADER 5: prevalence and cardiometabolic impact of obesity in cardiovascular high-risk patients with type 2 diabetes mellitus: baseline global data from the LEADER trial.

Cardiovasc Diabetol. 2016-2-10

引用本文的文献

[1]
Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance analysis.

Sci Rep. 2025-8-21

[2]
Conditional universal differential equations capture population dynamics and interindividual variation in c-peptide production.

NPJ Syst Biol Appl. 2025-7-31

[3]
How do patients choose between obesity medications: A thematic analysis.

Obes Pillars. 2025-6-16

[4]
Kidney replacement therapy in critically ill obese patients: an urgent call for precision and evidence-based practice!

Intensive Care Med. 2025-7-14

[5]
Genomics reveals eleven obesity endotypes with distinct biological and phenotypic signatures.

medRxiv. 2025-7-2

[6]
The role and challenges of plant extracts in obesity management.

Mol Biol Rep. 2025-6-19

[7]
Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation.

Eur J Clin Invest. 2025-8

[8]
Obesity and its management in primary care setting.

J Diabetes Complications. 2025-7

[9]
Weight Reduction with GLP-1 Agonists and Paths for Discontinuation While Maintaining Weight Loss.

Biomolecules. 2025-3-13

[10]
BMI-residualized data uncovers a cluster of people with type 2 diabetes and increased serum ferritin protected from cardiovascular disease.

Cardiovasc Diabetol. 2025-3-26

本文引用的文献

[1]
Why BMI is flawed - and how to redefine obesity.

Nature. 2023-10

[2]
Body mass index and all-cause mortality in a 21st century U.S. population: A National Health Interview Survey analysis.

PLoS One. 2023

[3]
SCORE2-Diabetes: 10-year cardiovascular risk estimation in type 2 diabetes in Europe.

Eur Heart J. 2023-7-21

[4]
Apolipoprotein C3 induces inflammasome activation only in its delipidated form.

Nat Immunol. 2023-3

[5]
A phenome-wide comparative analysis of genetic discordance between obesity and type 2 diabetes.

Nat Metab. 2023-2

[6]
Predicting Sensitivity to Adverse Lifestyle Risk Factors for Cardiometabolic Morbidity and Mortality.

Nutrients. 2022-8-1

[7]
Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization.

Commun Biol. 2022-7-19

[8]
Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes.

Nat Med. 2022-5

[9]
Increased burden of cardiovascular disease in people with liver disease: unequal geographical variations, risk factors and excess years of life lost.

J Transl Med. 2022-1-3

[10]
Association of BMI, comorbidities and all-cause mortality by using a baseline mortality risk model.

PLoS One. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索