Qi Leitao, Sun Haibo
School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, China.
Sci Rep. 2025 Jul 30;15(1):27832. doi: 10.1038/s41598-025-11325-y.
An accurate yet computationally efficient fall detection system for sports activities is a significant and challenging task. To address this, we propose a novel multi-stage fall detection framework that integrates 3D pose sequences with temporal convolutional modeling. The framework first performs 2D human pose estimation to extract and enhance multi-scale spatial features. Then, it reconstructs the 2D poses into 3D poses using a domain transfer architecture that aligns the 2D and 3D poses within a shared semantic space. Subsequently, we introduce a robust fall detection network that leverages temporal convolutions to process the 3D pose sequences, capturing long-term dependencies while maintaining low computational costs for fall event recognition. Evaluated on the large-scale benchmark action dataset NTU RGB+D, our method achieves a fall detection accuracy of 99.87%, demonstrating its state-of-the-art performance and effectiveness.
为体育活动开发一个准确且计算效率高的跌倒检测系统是一项重大且具有挑战性的任务。为解决此问题,我们提出了一种新颖的多阶段跌倒检测框架,该框架将3D姿态序列与时间卷积建模相结合。该框架首先执行2D人体姿态估计,以提取和增强多尺度空间特征。然后,使用一种域转移架构将2D姿态重建为3D姿态,该架构在共享语义空间中对齐2D和3D姿态。随后,我们引入了一个强大的跌倒检测网络,该网络利用时间卷积来处理3D姿态序列,在保持跌倒事件识别低计算成本的同时捕获长期依赖性。在大规模基准动作数据集NTU RGB+D上进行评估时,我们的方法实现了99.87%的跌倒检测准确率,证明了其领先的性能和有效性。