Suppr超能文献

基于3D姿态序列和TCN集成的多阶段跌倒检测框架

Multistage fall detection framework via 3D pose sequences and TCN integration.

作者信息

Qi Leitao, Sun Haibo

机构信息

School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, China.

出版信息

Sci Rep. 2025 Jul 30;15(1):27832. doi: 10.1038/s41598-025-11325-y.

Abstract

An accurate yet computationally efficient fall detection system for sports activities is a significant and challenging task. To address this, we propose a novel multi-stage fall detection framework that integrates 3D pose sequences with temporal convolutional modeling. The framework first performs 2D human pose estimation to extract and enhance multi-scale spatial features. Then, it reconstructs the 2D poses into 3D poses using a domain transfer architecture that aligns the 2D and 3D poses within a shared semantic space. Subsequently, we introduce a robust fall detection network that leverages temporal convolutions to process the 3D pose sequences, capturing long-term dependencies while maintaining low computational costs for fall event recognition. Evaluated on the large-scale benchmark action dataset NTU RGB+D, our method achieves a fall detection accuracy of 99.87%, demonstrating its state-of-the-art performance and effectiveness.

摘要

为体育活动开发一个准确且计算效率高的跌倒检测系统是一项重大且具有挑战性的任务。为解决此问题,我们提出了一种新颖的多阶段跌倒检测框架,该框架将3D姿态序列与时间卷积建模相结合。该框架首先执行2D人体姿态估计,以提取和增强多尺度空间特征。然后,使用一种域转移架构将2D姿态重建为3D姿态,该架构在共享语义空间中对齐2D和3D姿态。随后,我们引入了一个强大的跌倒检测网络,该网络利用时间卷积来处理3D姿态序列,在保持跌倒事件识别低计算成本的同时捕获长期依赖性。在大规模基准动作数据集NTU RGB+D上进行评估时,我们的方法实现了99.87%的跌倒检测准确率,证明了其领先的性能和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01b9/12314093/a248febaa4e2/41598_2025_11325_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验