Suppr超能文献

一种用于群体药代动力学建模自动化的机器学习方法。

A machine learning approach to population pharmacokinetic modelling automation.

作者信息

Richardson Sam, Irurzun Arana Itziar, Nowojewski Andrzej, Zhou Diansong, Leander Jacob, Tang Weifeng, Dearden Richard, Gibbs Megan

机构信息

Imaging & Data Analytics, Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK.

Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK.

出版信息

Commun Med (Lond). 2025 Jul 31;5(1):327. doi: 10.1038/s43856-025-01054-8.

Abstract

BACKGROUND

Population pharmacokinetic (PopPK) models are crucial for understanding drug behaviour across populations, yet traditional development is often labour-intensive and slow. This study demonstrates an automated, out-of-the-box approach for popPK model development, leveraging optimisation algorithms implemented using pyDarwin to efficiently handle a diverse range of extravascular drugs.

METHODS

We proposed a generic model search space for drugs with extravascular administration and developed a penalty function to discourage over-parameterisation whilst ensuring plausible parameter values. Optimisation within the model search space was conducted using pyDarwin, employing Bayesian optimisation with a random forest surrogate combined with exhaustive local search. This approach was evaluated on one synthetic and four clinical datasets, with results compared to manually developed models.

RESULTS

Here we show that the automated approach reliably identifies model structures comparable to manually developed expert models in less than 48 h on average (40-CPU, 40 GB environment) while evaluating fewer than 2.6% of the models in the search space. Ablation experiments demonstrate the importance of our penalty function in selecting plausible models, and the benefit of global search algorithms in avoiding local minima.

CONCLUSIONS

These results demonstrate that a single penalty function and model space can be used within the pyDarwin framework to automatically identify model structures for a diverse range of drugs. By reducing the configuration required at search setup, this approach simplifies the process, potentially making the technology more accessible to users. Adoption of automatic model search can accelerate popPK analysis, improve model quality, increase reproducibility, and reduce manual effort for modellers.

摘要

背景

群体药代动力学(PopPK)模型对于理解不同人群中的药物行为至关重要,但传统的模型开发往往劳动强度大且速度缓慢。本研究展示了一种用于PopPK模型开发的自动化、开箱即用的方法,利用使用pyDarwin实现的优化算法来有效处理多种血管外给药药物。

方法

我们为血管外给药药物提出了一个通用的模型搜索空间,并开发了一个惩罚函数,以抑制过度参数化,同时确保参数值合理。在模型搜索空间内使用pyDarwin进行优化,采用贝叶斯优化与随机森林代理相结合,并结合穷举局部搜索。该方法在一个合成数据集和四个临床数据集上进行了评估,并将结果与手动开发的模型进行了比较。

结果

我们在此表明,该自动化方法能够可靠地识别出与手动开发的专家模型相当的模型结构,平均用时不到48小时(40个CPU、40GB环境),同时评估的模型数量不到搜索空间中模型总数的2.6%。消融实验证明了我们的惩罚函数在选择合理模型方面的重要性,以及全局搜索算法在避免局部最小值方面的益处。

结论

这些结果表明,在pyDarwin框架内可以使用单个惩罚函数和模型空间来自动识别多种药物的模型结构。通过减少搜索设置所需的配置,这种方法简化了流程,可能使该技术对用户更易获取。采用自动模型搜索可以加速PopPK分析,提高模型质量,增加可重复性,并减少建模人员的人工工作量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验