Ma Xiaolin, Pan Houhe, Gong Lei, Ding Xu, Zhou Xing, Liu Heyuan, Wang Rongming, Qu Chen, Zhao Yanjun, Qi Dongdong, Bian Yongzhong, Jiang Jianzhuang
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China.
Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202511024. doi: 10.1002/anie.202511024. Epub 2025 Jul 31.
Hydrogen peroxide (HO) is a vital industrial chemical extensively utilized in textiles, pharmaceuticals, and disinfection. Solar-driven photocatalytic technology depending on photocatalysts with matched energy band structure for simultaneously driving both O reduction and water oxidation half-reactions, without necessary use of any sacrificial agent, enables green HO synthesis from O and/or HO, offering a low-energy and simple-operation process without secondary pollution while avoiding safety and environmental risk of conventional methods. Herein, a novel acylhydrazone-linked 2D COF, COF-S-OH, was prepared from benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde and 2,3-dihydroxysuccinohydrazide. Both experimental and theoretical analyses reveal that introduction of benzotrithiophene units and hydroxyl groups enhances the electron donor-acceptor effect in COF-S-OH, optimizes the light-harvesting and adsorption capacities to O and HO, and particularly enables efficient proton transfer, thereby synergistically improving photogenerated charge carrier separation and surface reaction efficiency. Consequently, COF-S-OH achieves an exceptional HO production rate of 10.2 mmol g h with a solar-to-chemical conversion efficiency of 2.1%, superior to all the thus far reported photocatalysts for HO synthesis. This work underscores the critical importance of carrier separation, active site, and proton supply in photocatalytic HO generation, providing guidance for designing and fabricating next-generation photocatalysts.
过氧化氢(H₂O₂)是一种重要的工业化学品,广泛应用于纺织、制药和消毒领域。基于具有匹配能带结构的光催化剂的太阳能驱动光催化技术,能够同时驱动O₂还原和水氧化两个半反应,无需使用任何牺牲剂,实现了从O₂和/或H₂O合成绿色H₂O₂,提供了一种低能耗、操作简单且无二次污染的过程,同时避免了传统方法的安全和环境风险。在此,由苯并[1,2-b:3,4-b':5,6-b'']三噻吩-2,5,8-三甲醛和2,3-二羟基琥珀酰肼制备了一种新型的酰腙连接二维共价有机框架(COF),即COF-S-OH。实验和理论分析均表明,苯并三噻吩单元和羟基的引入增强了COF-S-OH中的电子给体-受体效应,优化了对O₂和H₂O的光捕获和吸附能力,特别是实现了高效的质子转移,从而协同提高了光生电荷载流子的分离和表面反应效率。因此,COF-S-OH实现了10.2 mmol g⁻¹ h⁻¹的优异H₂O₂产率,太阳能到化学能的转换效率为2.1%,优于迄今为止报道的所有用于H₂O₂合成的光催化剂。这项工作强调了载流子分离、活性位点和质子供应在光催化H₂O₂生成中的关键重要性,为设计和制备下一代光催化剂提供了指导。