Xue Zilu, Zhang Boying, Guo Qiaoling, Wang Yushan, Li Qing, Yang Kaiwei, Qiao Shanlin
College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
Hebei Engineering Research Center of Organic Solid Photoelectric Materials for Electronic Information, Shijiazhuang, 050018, China.
Adv Mater. 2025 Aug 4:e10201. doi: 10.1002/adma.202510201.
Covalent organic framework (COF) photocatalysts for HO production remain challenging by mass transport limitations and poor charge separation efficiency. Herein, a sacrificial agent-triggered mass-transfer gating (MTG) strategy is developed to reconfigure interfacial reaction for photocatalytic HO generation via synthesized benzothiazole-COFs. This enables precise switching of the dominant photocatalytic mechanism between surface-confined directional charge transfer pathways and diffusion-dominated redox processes. Notably, benzyl alcohol (BA) enhances the mass transport and the catalytic site accessibility, scavenges photogenerated holes, and supplies protons for coupling reactions, thereby increasing the HO yield of Tp-BTz COF to 100.9 mmol g h and achieving the outstanding photocatalytic performance reported to date. Both Tp-BTz COF and Tp-TTz COF demonstrate durably high HO production efficiency even in the high-salinity seawater and municipal tap water systems. The generated HO effectively degrades organic pollutants such as methyl orange (MO) and rhodamine B (RhB), demonstrating practical potential for wastewater treatment. The proposed gating strategy by introducing BA enables three synergistic functions: i) modulating interfacial reactions, ii) acting as a sacrificial agent to scavenge holes, and iii) supplying abundant protons (H) for the oxygen reduction reaction (ORR) to facilitate the proton-coupled electron transfer. This approach establishes a generalizable paradigm for designing high-performance photocatalytic systems toward sustainable energy and environmental applications.
用于生成羟基自由基(·OH)的共价有机框架(COF)光催化剂,由于传质限制和电荷分离效率低下,仍然面临挑战。在此,我们开发了一种牺牲剂触发的传质门控(MTG)策略,通过合成的苯并噻唑基COF来重新配置光催化生成·OH的界面反应。这使得在表面受限的定向电荷转移途径和扩散主导的氧化还原过程之间,能够精确切换占主导地位的光催化机制。值得注意的是,苯甲醇(BA)增强了传质和催化位点的可及性,清除光生空穴,并为偶联反应提供质子,从而将Tp-BTz COF的·OH产率提高到100.9 mmol g⁻¹ h⁻¹,并实现了迄今为止报道的出色光催化性能。即使在高盐度海水和城市自来水体系中,Tp-BTz COF和Tp-TTz COF都表现出持久的高·OH生成效率。所生成的·OH能有效降解甲基橙(MO)和罗丹明B(RhB)等有机污染物,展现了在废水处理方面的实际潜力。通过引入BA提出的门控策略实现了三种协同功能:i)调节界面反应,ii)作为牺牲剂清除空穴,iii)为氧还原反应(ORR)提供丰富的质子(H⁺)以促进质子耦合电子转移。这种方法为设计面向可持续能源和环境应用的高性能光催化系统建立了一种可推广的范例。