Jabbarpour Amir, Moulton Eric, Kaviani Sanaz, Ghassel Siraj, Zeng Wanzhen, Akbarian Ramin, Couture Anne, Roy Aubert, Liu Richard, Lucinian Yousif A, Hejji Nuha, AlSulaiman Sukainah, Shirazi Farnaz, Leung Eugene, Bonsall Sierra, Arfin Samir, Gray Bruce G, Klein Ran
Department of Physics, Carleton University, Ottawa, ON, Canada.
Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada.
Front Nucl Med. 2025 Jul 17;5:1632112. doi: 10.3389/fnume.2025.1632112. eCollection 2025.
Ventilation-perfusion (V/Q) nuclear scintigraphy remains a vital diagnostic tool for assessing pulmonary embolism (PE) and other lung conditions. Interpretation of these images requires specific expertise which may benefit from recent advances in artificial intelligence (AI) to improve diagnostic accuracy and confidence in reporting. Our study aims to develop a multi-center dataset combining imaging and clinical reports to aid in creating AI models for PE diagnosis.
We established a comprehensive imaging registry encompassing patient-level V/Q image data along with relevant clinical reports, CTPA images, DVT ultrasound impressions, D-dimer lab tests, and thrombosis unit records. Data extraction was performed at two hospitals in Canada and at multiple sites in the United States, followed by a rigorous de-identification process. We utilized the V7 Darwin platform for crowdsourced annotation of V/Q images including segmentation of V/Q mismatched vascular defects. The annotated data was then ingested into Deep Lake, a SQL-based database, for AI model training. Quality assurance involved manual inspections and algorithmic validation.
A query of The Ottawa Hospital's data warehouse followed by initial data screening yielded 2,137 V/Q studies with 2,238 successfully retrieved as DICOM studies. Additional contributions included 600 studies from University Health Toronto, and 385 studies by private company Segmed Inc. resulting in a total of 3,122 V/Q planar and SPECT images. The majority of studies were acquired using Siemens, Philips, and GE scanners, adhering to standardized local imaging protocols. After annotating 1,500 studies from The Ottawa Hospital, the analysis identified 138 high-probability, 168 intermediate-probability, 266 low-probability, 244 very low-probability, and 669 normal, and 15 normal perfusion with reversed mismatched ventilation defect studies. In 1,500 patients were 3,511 segmented vascular perfusion defects.
The VQ4PEDB comprised 8 unique ventilation agents and 11 unique scanners. The VQ4PEDB database is unique in its depth and breadth in the domain of V/Q nuclear scintigraphy for PE, comprising clinical reports, imaging studies, and annotations. We share our experience in addressing challenges associated with data retrieval, de-identification, and annotation. VQ4PEDB will be a valuable resource to development and validate AI models for diagnosing PE and other pulmonary diseases.
通气灌注(V/Q)核素闪烁扫描仍是评估肺栓塞(PE)和其他肺部疾病的重要诊断工具。解读这些图像需要特定的专业知识,而人工智能(AI)的最新进展可能有助于提高诊断准确性和报告的可信度。我们的研究旨在开发一个结合成像和临床报告的多中心数据集,以协助创建用于PE诊断的AI模型。
我们建立了一个全面的成像登记系统,涵盖患者层面的V/Q图像数据以及相关的临床报告、CTPA图像、DVT超声检查结果、D-二聚体实验室检查和血栓形成单元记录。数据提取在加拿大的两家医院和美国的多个地点进行,随后进行严格的去识别过程。我们利用V7达尔文平台对V/Q图像进行众包注释,包括对V/Q不匹配的血管缺损进行分割。然后将注释后的数据导入基于SQL的数据库Deep Lake中,用于AI模型训练。质量保证包括人工检查和算法验证。
对渥太华医院数据仓库进行查询并进行初步数据筛选后,得到2137项V/Q研究,其中2238项作为DICOM研究成功检索到。其他贡献包括多伦多大学健康网络的600项研究,以及私营公司Segmed Inc.的385项研究,总共得到3122张V/Q平面和SPECT图像。大多数研究使用西门子、飞利浦和通用电气的扫描仪进行,遵循标准化的本地成像协议。对渥太华医院的1500项研究进行注释后,分析确定了138项高概率、168项中概率、266项低概率、244项极低概率和669项正常研究,以及15项正常灌注伴反向不匹配通气缺损研究。在1500名患者中发现了3511个分割的血管灌注缺损。
VQ4PEDB包含8种独特的通气剂和11种独特的扫描仪。VQ4PEDB数据库在PE的V/Q核素闪烁扫描领域的深度和广度方面独具特色,包括临床报告、成像研究和注释。我们分享了在应对与数据检索、去识别和注释相关的挑战方面的经验。VQ4PEDB将成为开发和验证用于诊断PE和其他肺部疾病的AI模型的宝贵资源。