Suppr超能文献

推进肺栓塞预后精准度:一种基于临床和实验室的人工智能方法,用于增强早期死亡风险分层。

Advancing prognostic precision in pulmonary embolism: A clinical and laboratory-based artificial intelligence approach for enhanced early mortality risk stratification.

机构信息

Department of Computing, School of Digital, Technologies and Arts, Staffordshire University, Stoke-on-Trent, England, United Kingdom.

Azad University, Science and Research, Tehran, Iran.

出版信息

Comput Biol Med. 2023 Dec;167:107696. doi: 10.1016/j.compbiomed.2023.107696. Epub 2023 Nov 11.

Abstract

BACKGROUND

Acute pulmonary embolism (PE) is a critical medical emergency that necessitates prompt identification and intervention. Accurate prognostication of early mortality is vital for recognizing patients at elevated risk for unfavourable outcomes and administering suitable therapy. Machine learning (ML) algorithms hold promise for enhancing the precision of early mortality prediction in PE patients.

OBJECTIVE

To devise an ML algorithm for early mortality prediction in PE patients by employing clinical and laboratory variables.

METHODS

This study utilized diverse oversampling techniques to improve the performance of various machine learning models including ANN, SVM, DT, RF, and AdaBoost for early mortality prediction. Appropriate oversampling methods were chosen for each model based on algorithm characteristics and dataset properties. Predictor variables included four lab tests, eight physiological time series indicators, and two general descriptors. Evaluation used metrics like accuracy, F1_score, precision, recall, Area Under the Curve (AUC) and Receiver Operating Characteristic (ROC) curves, providing a comprehensive view of models' predictive abilities.

RESULTS

The findings indicated that the RF model with random oversampling exhibited superior performance among the five models assessed, achieving elevated accuracy and precision alongside high recall for predicting the death class. The oversampling approaches effectively equalized the sample distribution among the classes and enhanced the models' performance.

CONCLUSIONS

The suggested ML technique can efficiently prognosticate mortality in patients afflicted with acute PE. The RF model with random oversampling can aid healthcare professionals in making well-informed decisions regarding the treatment of patients with acute PE. The study underscores the significance of oversampling methods in managing imbalanced data and emphasizes the potential of ML algorithms in refining early mortality prediction for PE patients.

摘要

背景

急性肺栓塞(PE)是一种严重的医疗急症,需要迅速识别和干预。准确预测早期死亡率对于识别处于不良预后风险升高的患者并给予适当治疗至关重要。机器学习(ML)算法有望提高 PE 患者早期死亡率预测的准确性。

目的

通过使用临床和实验室变量为 PE 患者设计一种 ML 算法来预测早期死亡率。

方法

本研究利用多种过采样技术来提高各种机器学习模型(包括 ANN、SVM、DT、RF 和 AdaBoost)的性能,以进行早期死亡率预测。根据算法特征和数据集特性,为每个模型选择了适当的过采样方法。预测变量包括四项实验室检查、八项生理时间序列指标和两项一般描述符。评估使用了准确性、F1 分数、精度、召回率、曲线下面积(AUC)和接收器操作特征(ROC)曲线等指标,全面评估了模型的预测能力。

结果

研究结果表明,在评估的五个模型中,RF 模型采用随机过采样方法表现最佳,在预测死亡类别方面具有较高的准确性和精度,同时具有较高的召回率。过采样方法有效地均衡了各个类别的样本分布,并提高了模型的性能。

结论

所提出的 ML 技术可以有效地预测急性 PE 患者的死亡率。RF 模型采用随机过采样方法可以帮助医疗保健专业人员在治疗急性 PE 患者时做出明智的决策。该研究强调了过采样方法在处理不平衡数据方面的重要性,并强调了 ML 算法在改进 PE 患者早期死亡率预测方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验