用于术前胰腺导管腺癌风险分层的放射组学:跨人群验证、多维整合、挑战及未来方向。
Radiomics for preoperative pancreatic ductal adenocarcinoma risk stratification: Cross-population validation, multidimensional integration, challenges, and future directions.
作者信息
Liu Qin-Zhi, Zeng Lei, Sun Nian-Zhe
机构信息
National Clinical Research Center of Geriatric Disorders, Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
出版信息
World J Radiol. 2025 Jul 28;17(7):110048. doi: 10.4329/wjr.v17.i7.110048.
This editorial critically evaluated Liu 's recent retrospective analysis of 283 Chinese patients with resectable pancreatic ductal adenocarcinoma (PDAC) that validated a preoperative computed tomography-based risk scoring system originally developed in South Korea. The scoring system incorporated five parameters: (1) Tumor size; (2) Portal venous phase density; (3) Necrosis; (4) Peripancreatic infiltration; and (5) Suspected metastatic lymph nodes. While demonstrating satisfactory recurrence prediction capability without requiring complex technologies, thereby supporting clinical utility in Chinese populations, the study exhibited notable limitations. Most analyzed patients lacked neoadjuvant chemotherapy exposure, resulting in underrepresentation of low-risk subgroups. Additionally, the short follow-up duration potentially compromised long-term prognostic assessment. Contemporary advances in radiomics coupled with machine learning have enhanced multimodal data integration for PDAC management. However, clinical implementation continues to confront challenges including variability in imaging parameters, incomplete understanding of molecular underpinnings, and confounding treatment effects. Future investigations should prioritize developing multidimensional predictive frameworks that synergize radiographic, molecular, and clinical data. Prospective multicenter validation and artificial intelligence-powered real-time risk stratification systems represent essential steps to overcome current barriers in precision medicine translation, ultimately advancing personalized therapeutic strategies for PDAC.
这篇社论批判性地评估了刘最近对283例可切除胰腺导管腺癌(PDAC)中国患者的回顾性分析,该分析验证了最初在韩国开发的基于术前计算机断层扫描的风险评分系统。该评分系统纳入了五个参数:(1)肿瘤大小;(2)门静脉期密度;(3)坏死;(4)胰腺周围浸润;(5)可疑转移淋巴结。虽然该研究显示出令人满意的复发预测能力,且无需复杂技术,从而支持在中国人群中的临床应用,但该研究也存在显著局限性。大多数分析的患者缺乏新辅助化疗暴露,导致低风险亚组的代表性不足。此外,随访时间短可能会影响长期预后评估。放射组学与机器学习的当代进展增强了用于PDAC管理的多模态数据整合。然而,临床应用仍面临挑战,包括成像参数的变异性、对分子基础的不完全理解以及混杂的治疗效果。未来的研究应优先开发整合放射学、分子和临床数据并产生协同作用的多维预测框架。前瞻性多中心验证和人工智能驱动的实时风险分层系统是克服当前精准医学转化障碍的关键步骤,最终推动PDAC的个性化治疗策略。
相似文献
World J Gastrointest Surg. 2025-7-27
World J Clin Oncol. 2025-6-24
本文引用的文献
World J Gastrointest Surg. 2025-6-27
J Cachexia Sarcopenia Muscle. 2025-4
J Cachexia Sarcopenia Muscle. 2023-4
Cell Mol Life Sci. 2022-3-5