Suppr超能文献

将循环神经网络(RNN)和CatBoost模型集成到茶叶废料生物炭过滤系统中,用于预测有毒有机污染物的去除效率。

Integration of RNN and CatBoost models in a tea-waste biochar filtration system for toxic organic pollutant removal efficiency prediction.

作者信息

Jha Stuti, Gaur Rama, Shahabuddin Syed, Vakharia Vinay, Mohsin Mohammed E Ali

机构信息

Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University Knowledge Corridor, Raysan Gandhinagar Gujarat 382426 India

Department of Mechanical Engineering, School of Technology, Pandit Deendayal Energy University Knowledge Corridor, Raysan Gandhinagar Gujarat 382426 India.

出版信息

RSC Adv. 2025 Jul 31;15(33):27260-27278. doi: 10.1039/d5ra01021g. eCollection 2025 Jul 25.

Abstract

Water pollution is a dreadful global crisis undermining the environment and economy. In order to combat this issue, several methods and techniques are adopted for treating the polluted water. Adsorption by biowastes is one of the most economically viable, simple, and effective methods for wastewater treatment. In spite of numerous reports in the literature showing the removal of various pollutants, there is still room for investigation in the field of simultaneous adsorption of varied categories of pollutants. The present study focuses on the simultaneous removal of organic water contaminants like dyes, agrochemicals, and aromatic compounds from wastewater using biochar prepared from tea waste as adsorbent. A detailed investigation on the effect of contact time, pH, dosage, and temperature on the adsorption performance of adsorbent has been carried out. At optimized reaction condition of 5 mg ml of adsorbent dosage at pH 2 for 60 min, 82.66% overall removal was obtained for 40 ppm of pollutant (malachite green, congo red, chlorpyrifos, and 4-nitroaniline) mixture. Further, the percentage removal was predicted using two machine learning (ML) models: CatBoost and Recurrent Neural Network (RNN), with and without Bayesian optimization. The prediction capability of these models was evaluated using three performance metrics: coefficient of determination ( ), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Based on the evaluation, RNN was found to be the most effective model for % removal prediction based on higher value of 0.960. Moreover, the fabrication of a portable column filtration device for the removal of coexisting harmful organic pollutants has been demonstrated. The results confirm that tea waste (TW)-derived biochar, coupled with advanced machine learning models, is a promising solution for real-time wastewater treatment.

摘要

水污染是一场可怕的全球危机,正在破坏环境和经济。为了解决这个问题,人们采用了多种方法和技术来处理受污染的水。利用生物废料进行吸附是废水处理中最经济可行、简单且有效的方法之一。尽管文献中有大量报告表明各种污染物被去除,但在同时吸附不同种类污染物的领域仍有研究空间。本研究重点关注使用由茶渣制备的生物炭作为吸附剂,同时去除废水中的有机水污染物,如染料、农用化学品和芳香族化合物。已对接触时间、pH值、用量和温度对吸附剂吸附性能的影响进行了详细研究。在pH值为2、吸附剂用量为5mg/ml、接触时间为60分钟的优化反应条件下,对于40ppm的污染物(孔雀石绿、刚果红、毒死蜱和4-硝基苯胺)混合物,总去除率达到了82.66%。此外,使用两种机器学习(ML)模型:CatBoost和递归神经网络(RNN),在有和没有贝叶斯优化的情况下,预测了去除率。使用三个性能指标评估了这些模型的预测能力:决定系数( )、平均绝对误差(MAE)和均方根误差(RMSE)。基于评估,发现RNN是基于更高的0.960的 值进行去除率预测的最有效模型。此外,还展示了用于去除共存有害有机污染物的便携式柱式过滤装置的制造。结果证实,茶渣(TW)衍生的生物炭与先进的机器学习模型相结合,是实时废水处理的一个有前景的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f81/12312101/481558042566/d5ra01021g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验