Suppr超能文献

作为信息压缩的知识度量反映了生物医学实验的可重复性预测。

A metric of knowledge as information compression reflects reproducibility predictions for biomedical experiments.

作者信息

Fanelli Daniele, Tan Pedro Batista, Amaral Olavo B, Neves Kleber

机构信息

Theoretical and Empirical METaknowledge (TEMET) lab, School of Social Sciences, Heriot-Watt University, Edinburgh, UK.

Department of Methodology, London School of Economics and Political Science, London, UK.

出版信息

R Soc Open Sci. 2025 Jul 9;12(7):241446. doi: 10.1098/rsos.241446. eCollection 2025 Jul.

Abstract

Forecasting the reproducibility of research findings is one of the key challenges of metascience. Above-chance predictions have mainly been achieved by pooling the subjective ratings of experts, and how these predictions are formed remains to be understood. Here, we show that reproducibility forecasts made for the Brazilian Reproducibility Initiative (BRI), a large-scale replication of experiments in the life sciences, are significantly correlated with , a principled metric of knowledge as information compression. For each study in the BRI sample, we calculated by dividing the effect size, measured in bits of Shannon entropy, by the descriptive length (a proxy of the complexity) of the study's methodology, calculated as the optimal Shannon encoding of a conceptual graph representing the replication protocol. We found that experts' predictions about reproducibility were statistically associated with values and with the complexity of protocols. This relation was robust to controlling for study methodology and other possible confounding factors. These results suggest that expert raters partially judge the reproducibility of findings by assessing the ratio between the information yielded and the information required by a study, and they support the hypothesis that scientific knowledge may be understood and studied through the lenses of information compression.

摘要

预测研究结果的可重复性是元科学的关键挑战之一。高于机遇水平的预测主要通过汇总专家的主观评分来实现,而这些预测是如何形成的仍有待了解。在这里,我们表明,对巴西可重复性倡议(BRI)所做的可重复性预测与 显著相关, 是一种将知识作为信息压缩的有原则的度量标准。对于BRI样本中的每项研究,我们通过将以香农熵比特为单位测量的效应大小除以研究方法的描述长度(复杂性的一个代理指标)来计算 ,研究方法的描述长度计算为表示复制协议的概念图的最优香农编码。我们发现,专家对可重复性的预测与 值以及协议的复杂性在统计上相关。这种关系在控制研究方法和其他可能的混杂因素时是稳健的。这些结果表明,专家评分者部分地通过评估一项研究产生的信息与所需信息之间的比率来判断结果的可重复性,并且它们支持这样一种假设,即科学知识可以通过信息压缩的视角来理解和研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验