Suppr超能文献

基于保险理赔数据的时空疫苗犹豫现象的图预测

Graph-Based Prediction of Spatio-Temporal Vaccine Hesitancy From Insurance Claims Data.

作者信息

Moon Sifat Afroj, Datta Rituparna, Ferdousi Tanvir, Baek Hannah, Adiga Abhijin, Marathe Achla, Vullikanti Anil

机构信息

Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.

Biocomplexity Institute (BI), University of Virginia, Charlottesville, VA 22904, USA.

出版信息

IEEE Access. 2025;13:50106-50121. doi: 10.1109/access.2025.3550775. Epub 2025 Mar 12.

Abstract

Growing vaccine hesitancy is contributing to the decline in immunization rates for highly contagious, vaccine-preventable childhood diseases. Therefore, there has been a significant interest in understanding how hesitancy is spreading at higher spatio-temporal resolutions, enabling more targeted interventions. Motivated by this, we study the problem of prediction of vaccine hesitancy at the ZIP Code level, referred to as the VaxHesitancy problem. A significant challenge for this problem is the lack of high-resolution data that indicates hesitancy. Here, we develop a hybrid VaxHesSTL framework that combines a Graph Neural Network (GNN) and a Recurrent Neural Network (RNN) to address the VaxHesitancy problem. The GNN uses a ZIP Code-level network to capture spatial signals from neighboring areas, while the RNN models the temporal dynamics present in the data. We train and evaluate VaxHesSTL using a large dataset, namely the All-Payer Claims Databases (APCD), for Virginia, consisting of insurance claims from over five million individuals for six years. We find that an aggregated contact network or graph, developed from a detailed activity-based population network, plays an important role in the performance of VaxHesSTL, compared to graph models based solely on spatial proximity. Experiments demonstrate that VaxHesSTL outperforms a range of state-of-the-art baselines, which rely solely on historical time series data without accounting for spatial relationships. Since hesitancy data at higher spatial resolution is often unavailable or hard to get, we incorporate an active learning approach with our VaxHesSTL framework to optimize the training set without compromising the prediction performance. We find that hesitancy data for only 18% of ZIP Codes selected by active learning allows us to forecast hesitancy for all the ZIP Codes in the Virginia.

摘要

日益增长的疫苗犹豫情绪导致了针对儿童高传染性、可通过疫苗预防疾病的免疫接种率下降。因此,人们对了解疫苗犹豫情绪如何在更高的时空分辨率下传播产生了浓厚兴趣,以便能够采取更有针对性的干预措施。受此推动,我们研究了在邮政编码级别预测疫苗犹豫情绪的问题,即疫苗犹豫问题(VaxHesitancy问题)。该问题面临的一个重大挑战是缺乏表明犹豫情绪的高分辨率数据。在此,我们开发了一种混合的VaxHesSTL框架,它结合了图神经网络(GNN)和循环神经网络(RNN)来解决疫苗犹豫问题。GNN使用邮政编码级别的网络来捕捉来自相邻区域的空间信号,而RNN则对数据中呈现的时间动态进行建模。我们使用一个大型数据集,即弗吉尼亚州的全支付方索赔数据库(APCD)来训练和评估VaxHesSTL,该数据集包含了超过500万人六年的保险索赔记录。我们发现,与仅基于空间邻近性的图模型相比,从基于详细活动的人口网络开发的聚合接触网络或图在VaxHesSTL的性能中起着重要作用。实验表明,VaxHesSTL优于一系列仅依赖历史时间序列数据而不考虑空间关系的现有基准模型。由于更高空间分辨率的犹豫情绪数据通常不可用或难以获取,我们将主动学习方法纳入VaxHesSTL框架,以在不影响预测性能的情况下优化训练集。我们发现,通过主动学习选择的仅18%的邮政编码的犹豫情绪数据就能让我们预测弗吉尼亚州所有邮政编码区域的犹豫情绪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5c/12311826/9f81c3586c9e/nihms-2068891-f0008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验