Suppr超能文献

基于介电弹性体的数据驱动双稳态软体机器人元件建模与识别

Data-driven modeling and identification of a bistable soft-robot element based on dielectric elastomer.

作者信息

Masoud Abd Elkarim, Maas Jürgen

机构信息

Mechatronic Systems Laboratory, Institute of Machine Design and Systems Technology, Technische Universität Berlin, Berlin, Germany.

出版信息

Front Robot AI. 2025 Jul 17;12:1546945. doi: 10.3389/frobt.2025.1546945. eCollection 2025.

Abstract

This paper presents the development and experimental validation of a hybrid modeling framework for a bistable soft robotic system driven by dielectric elastomer (DE) actuators. The proposed approach combines physics-based analytical modeling with data-driven radial basis function (RBF) networks to capture the nonlinear and dynamic behavior of the soft robots. The bistable DE system consists of a buckled beam structure and symmetric DE membranes to achieve rapid switching between two stable states. A physics-based model is first derived to describe the electromechanical coupling, energy functions, and dynamic behavior of the actuator. To address discrepancies between the analytical model and experimental data caused by geometric asymmetries and unmodeled effects, the model is augmented with RBF networks. The model is refined using experimental data and validated through analytical, numerical, and experimental investigation.

摘要

本文介绍了一种由介电弹性体(DE)致动器驱动的双稳态软机器人系统的混合建模框架的开发和实验验证。所提出的方法将基于物理的解析建模与数据驱动的径向基函数(RBF)网络相结合,以捕捉软机器人的非线性和动态行为。双稳态DE系统由一个弯曲梁结构和对称的DE膜组成,以实现两个稳定状态之间的快速切换。首先推导了一个基于物理的模型来描述致动器的机电耦合、能量函数和动态行为。为了解决由几何不对称和未建模效应引起的解析模型与实验数据之间的差异,该模型用RBF网络进行了增强。该模型使用实验数据进行了优化,并通过解析、数值和实验研究进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f26c/12310471/001c4d80e93a/frobt-12-1546945-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验