Suppr超能文献

实现介电弹性体人工肌肉的潜力。

Realizing the potential of dielectric elastomer artificial muscles.

机构信息

Harvard Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138;

Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2476-2481. doi: 10.1073/pnas.1815053116. Epub 2019 Jan 24.

Abstract

Soft robotics represents a new set of technologies aimed at operating in natural environments and near the human body. To interact with their environment, soft robots require artificial muscles to actuate movement. These artificial muscles need to be as strong, fast, and robust as their natural counterparts. Dielectric elastomer actuators (DEAs) are promising soft transducers, but typically exhibit low output forces and low energy densities when used without rigid supports. Here, we report a soft composite DEA made of strain-stiffening elastomers and carbon nanotube electrodes, which demonstrates a peak energy density of 19.8 J/kg. The result is close to the upper limit for natural muscle (0.4-40 J/kg), making these DEAs the highest-performance electrically driven soft artificial muscles demonstrated to date. To obtain high forces and displacements, we used low-density, ultrathin carbon nanotube electrodes which can sustain applied electric fields upward of 100 V/μm without suffering from dielectric breakdown. Potential applications include prosthetics, surgical robots, and wearable devices, as well as soft robots capable of locomotion and manipulation in natural or human-centric environments.

摘要

软机器人代表了一组旨在在自然环境和人体附近运行的新技术。为了与环境交互,软机器人需要人工肌肉来驱动运动。这些人工肌肉需要像天然肌肉一样强大、快速和稳健。介电弹性体致动器(DEAs)是一种很有前途的软换能器,但在没有刚性支撑的情况下使用时,其输出力通常较低,能量密度也较低。在这里,我们报告了一种由应变硬化弹性体和碳纳米管电极组成的软复合材料 DEA,其峰值能量密度为 19.8 J/kg。这一结果接近天然肌肉的上限(0.4-40 J/kg),使这些 DEAs 成为迄今为止展示的最高性能电动软人工肌肉。为了获得高的力和位移,我们使用了低密度、超薄的碳纳米管电极,它们可以承受超过 100 V/μm 的外加电场而不会发生介电击穿。潜在的应用包括假肢、手术机器人和可穿戴设备,以及能够在自然或以人为中心的环境中运动和操纵的软机器人。

相似文献

1
Realizing the potential of dielectric elastomer artificial muscles.
Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2476-2481. doi: 10.1073/pnas.1815053116. Epub 2019 Jan 24.
2
A survey on dielectric elastomer actuators for soft robots.
Bioinspir Biomim. 2017 Jan 23;12(1):011003. doi: 10.1088/1748-3190/12/1/011003.
3
Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
Acc Chem Res. 2019 Feb 19;52(2):316-325. doi: 10.1021/acs.accounts.8b00516. Epub 2019 Jan 30.
4
Self-Healable, Self-Repairable, and Recyclable Electrically Responsive Artificial Muscles.
Adv Sci (Weinh). 2022 Aug;9(22):e2202153. doi: 10.1002/advs.202202153. Epub 2022 Jun 3.
5
Finger Prosthesis Driven by DEA Pairs as Agonist-Antagonist Artificial Muscles.
Biomimetics (Basel). 2024 Feb 13;9(2):110. doi: 10.3390/biomimetics9020110.
6
Dielectric Elastomer Actuators with Enhanced Durability by Introducing a Reservoir Layer.
Polymers (Basel). 2024 May 2;16(9):1277. doi: 10.3390/polym16091277.
7
Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.
Soft Robot. 2017 Dec;4(4):353-366. doi: 10.1089/soro.2017.0022. Epub 2017 Jun 21.
8
A High-Lift Micro-Aerial-Robot Powered by Low-Voltage and Long-Endurance Dielectric Elastomer Actuators.
Adv Mater. 2022 Feb;34(7):e2106757. doi: 10.1002/adma.202106757. Epub 2022 Jan 4.
9
Controlled flight of a microrobot powered by soft artificial muscles.
Nature. 2019 Nov;575(7782):324-329. doi: 10.1038/s41586-019-1737-7. Epub 2019 Nov 4.
10
All-Soft Skin-Like Structures for Robotic Locomotion and Transportation.
Soft Robot. 2020 Jun;7(3):309-320. doi: 10.1089/soro.2019.0059. Epub 2019 Nov 15.

引用本文的文献

1
Ultrasoft and fast self-healing poly(ionic liquid) electrode for dielectric elastomer actuators.
Nat Commun. 2025 Aug 11;16(1):7405. doi: 10.1038/s41467-025-62796-6.
2
Real-time in situ magnetization reprogramming for soft robotics.
Nature. 2025 Aug 4. doi: 10.1038/s41586-025-09459-0.
3
Data-driven modeling and identification of a bistable soft-robot element based on dielectric elastomer.
Front Robot AI. 2025 Jul 17;12:1546945. doi: 10.3389/frobt.2025.1546945. eCollection 2025.
4
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
5
Electrically-driven phase transition actuators to power soft robot designs.
Nat Commun. 2025 Apr 25;16(1):3920. doi: 10.1038/s41467-025-59023-7.
8
Wearable and Implantable Soft Robots.
Chem Rev. 2024 Oct 23;124(20):11585-11636. doi: 10.1021/acs.chemrev.4c00513. Epub 2024 Oct 11.
9
High-Voltage Power Supply for Four-Quadrant Dielectric Elastomer Actuators.
Sensors (Basel). 2024 Sep 20;24(18):6080. doi: 10.3390/s24186080.
10
Emerging innovations in electrically powered artificial muscle fibers.
Natl Sci Rev. 2024 Jul 5;11(10):nwae232. doi: 10.1093/nsr/nwae232. eCollection 2024 Oct.

本文引用的文献

2
Exploration of underwater life with an acoustically controlled soft robotic fish.
Sci Robot. 2018 Mar 21;3(16). doi: 10.1126/scirobotics.aar3449.
3
The grand challenges of .
Sci Robot. 2018 Jan 31;3(14). doi: 10.1126/scirobotics.aar7650.
4
Hydraulically amplified self-healing electrostatic actuators with muscle-like performance.
Science. 2018 Jan 5;359(6371):61-65. doi: 10.1126/science.aao6139.
6
Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.
Soft Robot. 2014 Mar 1;1(1):75-87. doi: 10.1089/soro.2013.0009.
7
Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch.
Adv Mater. 2016 Sep;28(36):8058-8063. doi: 10.1002/adma.201601842. Epub 2016 Jul 4.
8
Design, fabrication and control of soft robots.
Nature. 2015 May 28;521(7553):467-75. doi: 10.1038/nature14543.
9
Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers.
ACS Appl Mater Interfaces. 2014 May 28;6(10):7840-5. doi: 10.1021/am501130t. Epub 2014 May 2.
10
25th anniversary article: A soft future: from robots and sensor skin to energy harvesters.
Adv Mater. 2014 Jan 8;26(1):149-61. doi: 10.1002/adma.201303349. Epub 2013 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验