Suppr超能文献

使用深度学习进行实时指导和自动测量以改善左心室大小和功能的超声心动图评估。

Real-time guidance and automated measurements using deep learning to improve echocardiographic assessment of left ventricular size and function.

作者信息

Sabo Sigbjorn, Pettersen Håkon, Bøen Gunn C, Jakobsen Even O, Langøy Per K, Nilsen Hans O, Pasdeloup David, Smistad Erik, Østvik Andreas, Løvstakken Lasse, Stølen Stian, Grenne Bjørnar, Dalen Håvard, Holte Espen

机构信息

Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, PO Box 8905, Trondheim 7491, Norway.

Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.

出版信息

Eur Heart J Imaging Methods Pract. 2025 Jul 21;3(2):qyaf094. doi: 10.1093/ehjimp/qyaf094. eCollection 2025 Jul.

Abstract

AIMS

The low reproducibility of echocardiographic measurements challenges the identification of subtle changes in left ventricular (LV) function. Deep learning (DL) methods enable real-time analysis of acquisitions and may improve echocardiography. The aim of this study was to evaluate the impact of DL-based guidance and automated measurements on the reproducibility of LV global longitudinal strain (GLS), end-diastolic (EDV) and end-systolic (ESV) volume, and ejection fraction (EF).

METHODS AND RESULTS

Forty-six patients (24 breast cancer and 22 general cardiology patients) were included and underwent four consecutive echocardiograms. Six were included twice, totalling 52 inclusions and 208 echocardiograms. One sonographer-cardiologist pair used DL guidance and measurements (DL group), while another did not use DL tools and performed manual measurements (manual group). DL group recordings were also measured using a commercially available DL-based EF tool. For GLS, the DL group had a 30% lower test-retest variability than the manual group (minimal detectable change 2.0 vs. 2.9, = 0.036). LV volumes had ∼40% lower minimal detectable changes in the DL group vs. the manual group (32 mL vs. 52 mL for EDV and 18 mL vs. 32 mL for ESV, ≤ 0.006). This did not translate to a significant improvement in EF reproducibility in the DL group. The benchmarking method showed similar results compared with the manual group.

CONCLUSION

Combining real-time DL guidance with automated measurements improved the reproducibility of LV size and function measurements compared with usual care, but future studies are needed to evaluate its clinical effect.

TRIAL REGISTRATION NUMBER

NCT06310330.

摘要

目的

超声心动图测量的低重复性对识别左心室(LV)功能的细微变化提出了挑战。深度学习(DL)方法能够对采集的数据进行实时分析,并可能改善超声心动图检查。本研究的目的是评估基于DL的指导和自动测量对LV整体纵向应变(GLS)、舒张末期(EDV)和收缩末期(ESV)容积以及射血分数(EF)重复性的影响。

方法和结果

纳入46例患者(24例乳腺癌患者和22例普通心脏病患者),并连续进行4次超声心动图检查。其中6例患者被纳入两次,共计52次纳入和208次超声心动图检查。一组超声医师 - 心脏病专家使用DL指导和测量(DL组),而另一组未使用DL工具,进行手动测量(手动组)。DL组的记录也使用市售的基于DL的EF工具进行测量。对于GLS,DL组的重测变异性比手动组低30%(最小可检测变化为2.0对2.9,P = 0.036)。与手动组相比,DL组LV容积的最小可检测变化降低了约40%(EDV为32 mL对52 mL,ESV为18 mL对32 mL,P≤0.006)。这并未转化为DL组EF重复性的显著改善。与手动组相比,基准测试方法显示了相似的结果。

结论

与常规护理相比,将实时DL指导与自动测量相结合可提高LV大小和功能测量的重复性,但需要未来的研究来评估其临床效果。

试验注册号

NCT06310330。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2841/12311362/c9ca74d77386/qyaf094_ga.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验