Suppr超能文献

通过深度学习对经验丰富的操作人员进行实时指导,以提高超声心动图采集的标准化程度。

Real-time guidance by deep learning of experienced operators to improve the standardization of echocardiographic acquisitions.

作者信息

Sabo Sigbjorn, Pasdeloup David, Pettersen Hakon Neergaard, Smistad Erik, Østvik Andreas, Olaisen Sindre Hellum, Stølen Stian Bergseng, Grenne Bjørnar Leangen, Holte Espen, Lovstakken Lasse, Dalen Havard

机构信息

Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, PO Box 8905, 7491 Trondheim, Norway.

Clinic of Cardiology, St.Olavs University Hospital, Prinsesse Kristinas gate 3, 7030 Trondheim, Norway.

出版信息

Eur Heart J Imaging Methods Pract. 2023 Nov 27;1(2):qyad040. doi: 10.1093/ehjimp/qyad040. eCollection 2023 Sep.

Abstract

AIMS

Impaired standardization of echocardiograms may increase inter-operator variability. This study aimed to determine whether the real-time guidance of experienced sonographers by deep learning (DL) could improve the standardization of apical recordings.

METHODS AND RESULTS

Patients ( = 88) in sinus rhythm referred for echocardiography were included. All participants underwent three examinations, whereof two were performed by sonographers and the third by cardiologists. In the first study period (Period 1), the sonographers were instructed to provide echocardiograms for the analyses of the left ventricular function. Subsequently, after brief training, the DL guidance was used in Period 2 by the sonographer performing the second examination. View standardization was quantified retrospectively by a human expert as the primary endpoint and the DL algorithm as the secondary endpoint. All recordings were scored in rotation and tilt both separately and combined and were categorized as standardized or non-standardized. Sonographers using DL guidance had more standardized acquisitions for the combination of rotation and tilt than sonographers without guidance in both periods (all ≤ 0.05) when evaluated by the human expert and DL [except for the apical two-chamber (A2C) view by DL evaluation]. When rotation and tilt were analysed individually, A2C and apical long-axis rotation and A2C tilt were significantly improved, and the others were numerically improved when evaluated by the echocardiography expert. Furthermore, all, except for A2C rotation, were significantly improved when evaluated by DL ( < 0.01).

CONCLUSION

Real-time guidance by DL improved the standardization of echocardiographic acquisitions by experienced sonographers. Future studies should evaluate the impact with respect to variability of measurements and when used by less-experienced operators.

CLINICALTRIALSGOV IDENTIFIER

NCT04580095.

摘要

目的

超声心动图标准化的受损可能会增加操作者之间的变异性。本研究旨在确定深度学习(DL)对经验丰富的超声检查人员的实时指导是否可以提高心尖部记录的标准化。

方法和结果

纳入因超声心动图检查而窦性心律的患者(n = 88)。所有参与者均接受了三项检查,其中两项由超声检查人员进行,第三项由心脏病专家进行。在第一个研究阶段(阶段1),指导超声检查人员提供用于分析左心室功能的超声心动图。随后,经过简短培训后,在阶段2中,进行第二次检查的超声检查人员使用了DL指导。由人类专家将视图标准化作为主要终点进行回顾性量化,将DL算法作为次要终点进行量化。对所有记录的旋转和倾斜分别以及综合进行评分,并分为标准化或非标准化。当由人类专家和DL评估时,在两个阶段中,使用DL指导的超声检查人员在旋转和倾斜组合方面的采集标准化程度均高于未使用指导的超声检查人员(所有P≤0.05)[DL评估的心尖两腔(A2C)视图除外]。当单独分析旋转和倾斜时,超声心动图专家评估时,A2C以及心尖长轴旋转和A2C倾斜均有显著改善,其他方面在数值上有所改善。此外,当由DL评估时,除A2C旋转外,所有其他方面均有显著改善(P < 0.01)。

结论

DL的实时指导提高了经验丰富的超声检查人员超声心动图采集的标准化程度。未来的研究应评估其对测量变异性的影响以及经验较少的操作者使用时的情况。

临床试验注册编号

NCT04580095。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e21/11195719/81f606b7ffea/qyad040_ga1.jpg

相似文献

1
Real-time guidance by deep learning of experienced operators to improve the standardization of echocardiographic acquisitions.
Eur Heart J Imaging Methods Pract. 2023 Nov 27;1(2):qyad040. doi: 10.1093/ehjimp/qyad040. eCollection 2023 Sep.
2
Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability.
Eur Heart J Imaging Methods Pract. 2023 Aug 1;1(1):qyad012. doi: 10.1093/ehjimp/qyad012. eCollection 2023 May.
3
Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use.
JAMA Cardiol. 2021 Jun 1;6(6):624-632. doi: 10.1001/jamacardio.2021.0185.
5
Impact of telemedicine on the practice of pediatric cardiology in community hospitals.
Pediatrics. 2002 Jan;109(1):E3. doi: 10.1542/peds.109.1.e3.
6
7
The Use of Artificial Intelligence Guidance for Rheumatic Heart Disease Screening by Novices.
J Am Soc Echocardiogr. 2023 Jul;36(7):724-732. doi: 10.1016/j.echo.2023.03.001. Epub 2023 Mar 9.
8
Echocardiography in multicenter clinical trials: experience from the Treatment of Mild Hypertension Study.
Control Clin Trials. 1994 Oct;15(5):395-410. doi: 10.1016/0197-2456(94)90035-3.
9
Deep learning assisted measurement of echocardiographic left heart parameters: improvement in interobserver variability and workflow efficiency.
Int J Cardiovasc Imaging. 2023 Dec;39(12):2507-2516. doi: 10.1007/s10554-023-02960-5. Epub 2023 Oct 23.

引用本文的文献

1
Artificial intelligence-enhanced echocardiography in cardiovascular disease management.
Nat Rev Cardiol. 2025 Aug 5. doi: 10.1038/s41569-025-01197-0.
2
Real-time guidance and automated measurements using deep learning to improve echocardiographic assessment of left ventricular size and function.
Eur Heart J Imaging Methods Pract. 2025 Jul 21;3(2):qyaf094. doi: 10.1093/ehjimp/qyaf094. eCollection 2025 Jul.

本文引用的文献

1
Deep Learning for Improved Precision and Reproducibility of Left Ventricular Strain in Echocardiography: A Test-Retest Study.
J Am Soc Echocardiogr. 2023 Jul;36(7):788-799. doi: 10.1016/j.echo.2023.02.017. Epub 2023 Mar 16.
2
Normalized Echocardiographic Values From Guideline-Directed Dedicated Views for Cardiac Dimensions and Left Ventricular Function.
JACC Cardiovasc Imaging. 2023 Dec;16(12):1501-1515. doi: 10.1016/j.jcmg.2022.12.020. Epub 2023 Feb 8.
4
Real-Time Echocardiography Guidance for Optimized Apical Standard Views.
Ultrasound Med Biol. 2023 Jan;49(1):333-346. doi: 10.1016/j.ultrasmedbio.2022.09.006. Epub 2022 Oct 22.
5
Deep Learning-Based Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction: A Point-of-Care Solution.
Circ Cardiovasc Imaging. 2021 Jun;14(6):e012293. doi: 10.1161/CIRCIMAGING.120.012293. Epub 2021 Jun 15.
6
Variability of echocardiographic measures of left ventricular diastolic function. The HUNT study.
Echocardiography. 2021 Jun;38(6):901-908. doi: 10.1111/echo.15073. Epub 2021 May 6.
7
Utility of a Deep-Learning Algorithm to Guide Novices to Acquire Echocardiograms for Limited Diagnostic Use.
JAMA Cardiol. 2021 Jun 1;6(6):624-632. doi: 10.1001/jamacardio.2021.0185.
9
Real-Time Automatic Ejection Fraction and Foreshortening Detection Using Deep Learning.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2595-2604. doi: 10.1109/TUFFC.2020.2981037. Epub 2020 Nov 24.
10
Impact of apical foreshortening on deformation measurements: a report from the EACVI-ASE Strain Standardization Task Force.
Eur Heart J Cardiovasc Imaging. 2020 Mar 1;21(3):337-343. doi: 10.1093/ehjci/jez189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验