Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
Max Planck Institute for Marine Biology, Bremen, Germany.
Cell Host Microbe. 2022 Mar 9;30(3):314-328.e11. doi: 10.1016/j.chom.2022.02.001. Epub 2022 Mar 2.
Humans harbor numerous species of colonic bacteria that digest fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible macroalgae seaweeds containing unique polysaccharides. It remains unclear how extensively gut bacteria have adapted to digest these nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is more pervasive than previously appreciated. Enrichment-cultured Bacteroides harbor previously discovered genes for seaweed degradation, which have mobilized into several members of this genus. Additionally, other examples of marine bacteria-derived genes, and their mobile DNA elements, are involved in gut microbial degradation of seaweed polysaccharides, including genes in gut-resident Firmicutes. Collectively, these results uncover multiple separate events that have mobilized the genes encoding seaweed-degrading-enzymes into gut bacteria. This work further underscores the metabolic plasticity of the human gut microbiome and global exchange of genes in the context of dietary selective pressures.
人类肠道中栖息着大量的细菌,这些细菌能够消化人们经常食用的陆生植物中的纤维多糖。在人类历史的近期,不同地区的人群开始食用含有独特多糖的可食用大型海藻。目前尚不清楚肠道细菌在多大程度上适应了消化这些营养物质。在这里,我们发现肠道细菌消化海藻多糖的能力比之前认为的更为普遍。经富集培养的拟杆菌属(Bacteroides)拥有先前发现的用于海藻降解的基因,这些基因已经转移到该属的几个成员中。此外,海洋细菌衍生的基因及其移动 DNA 元件也参与了肠道微生物对海藻多糖的降解,其中包括肠道常驻Firmicutes 中的基因。总的来说,这些结果揭示了多个独立的事件,这些事件将编码海藻降解酶的基因转移到了肠道细菌中。这项工作进一步强调了人类肠道微生物组的代谢灵活性,以及在饮食选择压力背景下基因的全球交换。