Suppr超能文献

基于急性髓系白血病调控性细胞死亡途径的新型多基因预后模型的推导:整合基因表达、突变谱分析和免疫浸润的综合生物信息学分析

Derivation of a novel multi-gene prognostic model based on regulated cell death pathways in acute myeloid leukemia: A comprehensive bioinformatic analysis integrating gene expression, mutation profiling, and immune infiltration.

作者信息

Ahmadi Ali, Navidinia Amir Abas, Bashash Davood, Poopak Behzad, Esmaeili Shadi

机构信息

Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

PLoS One. 2025 Aug 1;20(8):e0328412. doi: 10.1371/journal.pone.0328412. eCollection 2025.

Abstract

BACKGROUND

Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with dismal survival outcomes, where dysregulation of regulated cell death (RCD) pathways plays a pivotal role in leukemogenesis and therapeutic resistance.

METHODS

Differential expression analyses were performed comparing AML samples with healthy bone marrow. Diagnostic differentially expressed genes (DEGs) were then intersected with curated gene sets representing apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis to derive an RCD-based gene signature. Prognostic markers were identified by univariate Cox regression, and these markers were refined using LASSO regression to construct a multi-gene prognostic model that generated an individual risk score (RS) for each patient. The performance of the model was validated internally through Kaplan-Meier survival analyses and receiver operating characteristic (ROC) curves for 1-, 3-, and 5-year survival, and externally confirmed in an independent TARGET-AML cohort. In addition, mutation analysis was conducted using the maftools package, and immune infiltration profiling was performed with CIBERSORT and xCell to characterize the molecular landscape of the risk groups.

RESULTS

Our integrative approach yielded a four-gene prognostic model incorporating ARHGEF35, GSN, ELANE, and AKT3. High RS was strongly associated with adverse overall survival, with Kaplan-Meier analyses showing p-value < 0.0001 in the training cohort and p-value = 0.0026 in the testing cohort. The model demonstrated robust predictive accuracy with AUC values of 82%, 87%, and 91% for 1-, 3-, and 5-year survival in the training set, and 65%, 81%, and 94% in the testing set. Mutation analysis revealed that DNMT3A and RUNX1 mutations were significantly enriched in high-RS patients (p-value = 0.0015 and p-value = 0.0086, respectively), whereas KIT mutations were more prevalent in low-RS patients (p-value = 0.0058). Immune profiling indicated that high-RS patients had increased M2 macrophage infiltration (p-value = 0.0027) and reduced resting mast cells (p-value = 0.0033).

CONCLUSION

These findings establish that an RCD-based multi-gene risk model can robustly stratify AML patients by prognosis and illuminate underlying genomic and immunologic mechanisms, thereby offering promising avenues for personalized therapeutic strategies.

摘要

背景

急性髓系白血病(AML)是一种侵袭性很强的血液系统恶性肿瘤,生存结局不佳,其中调节性细胞死亡(RCD)途径的失调在白血病发生和治疗耐药中起关键作用。

方法

进行差异表达分析,将AML样本与健康骨髓样本进行比较。然后将诊断性差异表达基因(DEG)与代表凋亡、焦亡、自噬、坏死性凋亡和铁死亡的精选基因集进行交集分析,以得出基于RCD的基因特征。通过单变量Cox回归确定预后标志物,并使用LASSO回归对这些标志物进行优化,以构建多基因预后模型,该模型为每位患者生成个体风险评分(RS)。通过Kaplan-Meier生存分析和1年、3年和5年生存的受试者工作特征(ROC)曲线在内部验证模型的性能,并在独立的TARGET-AML队列中进行外部验证。此外,使用maftools软件包进行突变分析,并使用CIBERSORT和xCell进行免疫浸润分析,以表征风险组的分子格局。

结果

我们的综合方法产生了一个包含ARHGEF35、GSN、ELANE和AKT3的四基因预后模型。高RS与不良总生存期密切相关,Kaplan-Meier分析显示,训练队列中的p值<0.0001,测试队列中的p值=0.0026。该模型在训练集中对1年、3年和5年生存的AUC值分别为82%、87%和91%,在测试集中为65%、81%和94%,显示出强大的预测准确性。突变分析显示,DNMT3A和RUNX1突变在高RS患者中显著富集(p值分别为0.0015和0.0086),而KIT突变在低RS患者中更为普遍(p值=0.0058)。免疫分析表明,高RS患者的M2巨噬细胞浸润增加(p值=0.0027),静息肥大细胞减少(p值=0.0033)。

结论

这些发现表明,基于RCD的多基因风险模型可以通过预后对AML患者进行可靠分层,并阐明潜在的基因组和免疫机制,从而为个性化治疗策略提供有希望的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验