Alqadi Basma S, Alsekait Deema Mohammed, Issa Mohamed F, Houssein Essam H, Ismail Fatma H, Said Mokhtar, Mostafa Nour, Elsayed Fahmi
Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia.
Sci Rep. 2025 Aug 1;15(1):28051. doi: 10.1038/s41598-025-10394-3.
This paper introduces a novel optimization algorithm, Young's double-slit experiment algorithm (YSDE), for accurately estimating the unknown parameters of Proton Exchange Membrane Fuel Cell (PEMFC) models. The proposed method integrates the YDSE algorithm with five other metaheuristic techniques: the sine cosine Algorithm (SCA), moth flame optimization (MFO), Harris Hawk optimization (HHO), gray wolf optimization (GWO) and chimp optimization Algorithm (ChOA) to estimate six critical parameters of PEMFC. Comparative analysis demonstrates that the YDSE algorithm outperforms competing methods by achieving the lowest Sum of Square Error (SSE) with a minimum value of approximately 1.9454, compared to higher values in other algorithms. Statistical evaluation over 30 independent runs reveals that YDSE attains a mean SSE of 1.9454 with an exceptionally low standard deviation of 2.21 × 10[Formula: see text], indicating remarkable consistency and robustness. Furthermore, the YDSE algorithm exhibits faster convergence, reaching optimal solutions in fewer iterations than other methods, thereby enhancing computational efficiency. The proposed YSDE is validated in three different PEMFC stack configurations, using standard performance indicators such as the sum of squared errors (SSE), standard deviation (SD), and Friedman rank (FRK). Experimental results demonstrate that YSDE consistently achieves superior accuracy and robustness. It reduces average SSE values by up to 97.8% compared to GWO and 97.6% compared to SCA. The worst-case SSE is improved by up to 70.6% over IChOA, and the standard deviation is reduced by 91.3% relative to MFO. In more complex configurations, YSDE maintains a 1000-times lower SD, while enhancing average accuracy by 2.6% over IChOA and 8.5% over MFO. Overall, YSDE achieves up to 87% improvement in ranking scores based on Friedman analysis, indicating its consistent superiority across different test cases. The statistical significance of YSDE's performance is confirmed through the Wilcoxon rank-sum and multiple comparison tests. These results highlight YSDE as a highly effective and stable solution for PEMFC system identification which has significant potential to develop digital twins and control systems in automotive applications and advance renewable energy technologies.
本文介绍了一种新颖的优化算法——杨氏双缝实验算法(YSDE),用于精确估计质子交换膜燃料电池(PEMFC)模型的未知参数。该方法将杨氏双缝实验算法与其他五种元启发式技术相结合:正弦余弦算法(SCA)、蛾火焰优化算法(MFO)、哈里斯鹰优化算法(HHO)、灰狼优化算法(GWO)和黑猩猩优化算法(ChOA),以估计PEMFC的六个关键参数。对比分析表明,与其他算法的较高值相比,杨氏双缝实验算法通过实现约1.9454的最低均方误差(SSE),优于其他竞争方法。对30次独立运行的统计评估表明,杨氏双缝实验算法的平均SSE为1.9454,标准差极低,为2.21×10[公式:见原文],表明其具有显著的一致性和鲁棒性。此外,杨氏双缝实验算法收敛速度更快,比其他方法在更少的迭代次数内就能达到最优解,从而提高了计算效率。所提出的YSDE在三种不同的PEMFC堆栈配置中进行了验证,使用了均方误差(SSE)、标准差(SD)和弗里德曼秩(FRK)等标准性能指标。实验结果表明,YSDE始终具有卓越的准确性和鲁棒性。与GWO相比,它将平均SSE值降低了高达97.8%,与SCA相比降低了97.6%。与IChOA相比,最坏情况下的SSE提高了高达70.6%,与MFO相比,标准差降低了91.3%。在更复杂的配置中,YSDE的标准差保持低1000倍,同时相对于IChOA平均精度提高了2.6%,相对于MFO提高了8.5%。总体而言,基于弗里德曼分析,YSDE的排名得分提高了高达87%,表明其在不同测试案例中始终具有优越性。通过威尔科克森秩和检验及多重比较检验,证实了YSDE性能的统计学显著性。这些结果突出了YSDE作为PEMFC系统识别的高效且稳定的解决方案,在汽车应用中开发数字孪生和控制系统以及推进可再生能源技术方面具有巨大潜力。