Suppr超能文献

慢性病患者数字患者报告结局中依从性的人口统计学和社会经济决定因素。

Demographic and socioeconomic determinants of adherence in digital patient-reported outcomes among patients with chronic diseases.

作者信息

Nikkhah Janis, Campione Alessandro, Steinbeck Viktoria, Wittich Laura, Pross Christoph, Busse Reinhard

机构信息

Department of Health Care Management, Technical University of Berlin, Berlin, Germany.

出版信息

NPJ Digit Med. 2025 Aug 1;8(1):492. doi: 10.1038/s41746-025-01899-2.

Abstract

Engaging patients in the digital collection of electronic patient-reported outcome measures (ePROMs) and experience measures (ePREMs) is desirable for equitable, patient-centred chronic disease management; however, adherence remain unclear. This study examined demographic and socioeconomic determinants of adherence using ePROMs and ePREMs collected from patients with asthma, chronic obstructive pulmonary disease, diabetes, and coronary artery disease across Germany. Of the 200,338 patients invited to complete digital surveys, 4657 consented (initiation; 2.32%) and 2375 completed at least one ePROM (implementation; 51.00% of initiation). Initiation was highest among asthma patients (3.42%) and lowest among those aged ≥75 years (1.09%). Implementation followed an inverse U-shaped age pattern and was lowest among patients with diabetes and those with low or unreported income. Findings indicate barriers to adherence associated with demographic and socioeconomic factors. Strategies such as inclusive engagement, integration of surveys into clinical care, and clinical endorsement may improve adherence. Trial registration: drks.de; Identifier: DRKS00031656.

摘要

让患者参与电子患者报告结局测量(ePROMs)和体验测量(ePREMs)的数字收集,对于公平、以患者为中心的慢性病管理是可取的;然而,依从性仍不明确。本研究使用从德国各地哮喘、慢性阻塞性肺疾病、糖尿病和冠状动脉疾病患者收集的ePROMs和ePREMs,检查了依从性的人口统计学和社会经济决定因素。在受邀完成数字调查的200338名患者中,4657人同意(启动;2.32%),2375人完成了至少一项ePROM(实施;占启动人数的51.00%)。哮喘患者的启动率最高(3.42%),≥75岁患者的启动率最低(1.09%)。实施呈现倒U形年龄模式,糖尿病患者以及收入低或未报告收入的患者实施率最低。研究结果表明了与人口统计学和社会经济因素相关的依从性障碍。诸如包容性参与、将调查纳入临床护理以及临床认可等策略可能会提高依从性。试验注册:drks.de;标识符:DRKS00031656。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0605/12317144/be197d24a6bd/41746_2025_1899_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验