Banerjee Tathagat
Department of Computer Science and Engineering, Indian Institute of Technology Patna, India.
Int J Dev Neurosci. 2025 Aug;85(5):e70034. doi: 10.1002/jdn.70034.
Autism spectrum disorder (ASD) is a complex neurological condition that impacts cognitive, social and behavioural abilities. Early and accurate diagnosis is crucial for effective intervention and treatment. Traditional diagnostic methods lack accuracy, efficient feature selection and computational efficiency. This study proposes an integrated approach that combines the electromagnetic interaction algorithm (EIA) for feature selection with the adaptive kernel attention network (AKAttNet) for classification, aiming to improve ASD detection performance across multiple datasets.
The proposed methodology consists of two core components: (1) EIA, which optimises feature selection by identifying the most relevant attributes for ASD classification, and (2) AKAttNet, a deep learning model leveraging adaptive kernel attention mechanisms to enhance classification accuracy. The framework is evaluated using four publicly available ASD datasets. The classification performance of AKAttNet is compared against traditional machine learning methods, including logistic regression (LR), support vector machine (SVM) and random forest (RF), as well as competing deep learning models. Statistical evaluation includes precision, recall (sensitivity), specificity and overall accuracy metrics.
The proposed model outperforms conventional machine learning and deep learning approaches, demonstrating higher classification accuracy and robustness across multiple datasets. AKAttNet, combined with EIA-based feature selection, achieves an accuracy improvement ranging from 0.901 to 0.9827, Cohen's kappa values between 0.7789 and 0.9685 and Jaccard similarity scores from 0.8041 to 0.9709 across four different datasets. Comparative analysis highlights the efficiency of the EIA algorithm in reducing feature dimensionality while maintaining high model performance. Additionally, the proposed method exhibits lower computational time and enhanced generalizability, making it a promising approach for ASD detection.
This study presents a practical ASD detection framework integrating EIA for feature selection with AKAttNet for classification. The results indicate that this hybrid approach enhances diagnostic accuracy while reducing computational overhead, making it a promising tool for early ASD diagnosis. The findings support the potential of deep learning and optimisation techniques in developing more efficient and reliable ASD screening systems. Future work can explore real-world clinical applications and further refinement of the feature selection process.
自闭症谱系障碍(ASD)是一种复杂的神经疾病,会影响认知、社交和行为能力。早期准确诊断对于有效干预和治疗至关重要。传统诊断方法缺乏准确性、高效的特征选择和计算效率。本研究提出一种综合方法,将用于特征选择的电磁交互算法(EIA)与用于分类的自适应核注意力网络(AKAttNet)相结合,旨在提高多个数据集上的ASD检测性能。
所提出的方法由两个核心组件组成:(1)EIA,通过识别与ASD分类最相关的属性来优化特征选择;(2)AKAttNet,一种利用自适应核注意力机制提高分类准确性的深度学习模型。使用四个公开可用的ASD数据集对该框架进行评估。将AKAttNet的分类性能与传统机器学习方法(包括逻辑回归(LR)、支持向量机(SVM)和随机森林(RF))以及竞争的深度学习模型进行比较。统计评估包括精度、召回率(敏感性)、特异性和总体准确性指标。
所提出的模型优于传统机器学习和深度学习方法,在多个数据集上表现出更高的分类准确性和鲁棒性。AKAttNet与基于EIA的特征选择相结合,在四个不同数据集上的准确率提高范围为0.901至0.9827,科恩卡方值在0.7789至0.9685之间,杰卡德相似性得分在0.8041至0.9709之间。对比分析突出了EIA算法在降低特征维度同时保持高模型性能方面的效率。此外,所提出的方法具有更低的计算时间和更高的泛化能力,使其成为ASD检测的一种有前途的方法。
本研究提出了一个实用的ASD检测框架,将用于特征选择的EIA与用于分类的AKAttNet相结合。结果表明,这种混合方法提高了诊断准确性,同时减少了计算开销,使其成为早期ASD诊断的一个有前途的工具。这些发现支持了深度学习和优化技术在开发更高效、可靠的ASD筛查系统方面的潜力。未来的工作可以探索实际临床应用以及进一步完善特征选择过程。