Suppr超能文献

利用基于物理和机器学习的扩展增强经验能量函数:修饰苯的结构、动力学和光谱学

Enhancing Empirical Energy Functions Using Physics- and Machine Learning-Based Extensions: Structure, Dynamics and Spectroscopy of Modified Benzenes.

作者信息

Lek Chaton Kham, Meuwly Markus

机构信息

Department of Chemistry, University of Basel, Basel, Switzerland.

Department of Chemistry, Brown University, Providence, Rhode Island, USA.

出版信息

J Comput Chem. 2025 Aug 5;46(21):e70162. doi: 10.1002/jcc.70162.

Abstract

The effects of replacing individual contributions to an empirical energy function are assessed for halogenated benzenes (X-Bz, X = H, F, Cl, Br) and chlorinated phenols (Cl-PhOH). Introducing electrostatic models based on minimal distributed charges (MDCM) instead of usual atom-centered point charges (PCs) to realistically describe features such as σ-holes yields overestimated hydration free energies unless the van der Waals parameters are reparametrized. Scaling van der Waals ranges by 10% to 20% for three Cl-PhOH and most X-Bz yield results within experimental error bars, which is encouraging, whereas for benzene (H-Bz) PC-based models are sufficient. Replacing the bonded terms by a neural network-trained energy function featuring fluctuating atom-centered PCs also yields qualitatively correct hydration free energies, which can be brought into agreement with experiments within error bars after adaptation of the van der Waals parameters. The infrared spectroscopy of Cl-PhOH is rather well captured by all models, although the ML-based energy function performs somewhat better in the region of the framework modes. The present work finds that refinements of empirical energy functions for targeted applications are a meaningful way toward more quantitative and physics-based simulations. At the same time, empirical energy functions have matured to a remarkable degree, at least for the species considered in the present work.

摘要

针对卤代苯(X-Bz,X = H、F、Cl、Br)和氯代酚(Cl-PhOH),评估了对经验能量函数中各个贡献进行替换的效果。引入基于最小分布电荷(MDCM)而非通常的原子中心点电荷(PCs)的静电模型来实际描述诸如σ-空穴等特征时,会产生高估的水合自由能,除非对范德华参数进行重新参数化。对于三种Cl-PhOH和大多数X-Bz,将范德华范围缩放10%至20%可得到在实验误差范围内的结果,这令人鼓舞,而对于苯(H-Bz),基于PCs的模型就足够了。用具有波动原子中心PCs的神经网络训练能量函数取代键合项,也能产生定性正确的水合自由能,在调整范德华参数后,可使其在误差范围内与实验结果一致。所有模型对Cl-PhOH的红外光谱都有较好的捕捉,尽管基于机器学习的能量函数在骨架模式区域表现稍好。目前的工作发现,针对特定应用对经验能量函数进行改进是迈向更定量和基于物理的模拟的一种有意义的方式。同时,经验能量函数已经成熟到了相当程度,至少对于本工作中考虑的物种是这样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e352/12317740/55763aff9e86/JCC-46-0-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验