Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Chem Theory Comput. 2023 Jun 27;19(12):3752-3762. doi: 10.1021/acs.jctc.3c00364. Epub 2023 Jun 2.
CHARMM is rich in methodology and functionality as one of the first programs addressing problems of molecular dynamics and modeling of biological macromolecules and their partners, e.g., small molecule ligands. When combined with the highly developed CHARMM parameters for proteins, nucleic acids, small molecules, lipids, sugars, and other biologically relevant building blocks, and the versatile CHARMM scripting language, CHARMM has been a trendsetting platform for modeling studies of biological macromolecules. To further enhance the utility of accessing and using CHARMM functionality in increasingly complex workflows associated with modeling biological systems, we introduce pyCHARMM, Python bindings, functions, and modules to complement and extend the extensive set of modeling tools and methods already available in CHARMM. These include access to CHARMM function-generated variables associated with the system (psf), coordinates, velocities and forces, atom selection variables, and force field related parameters. The ability to augment CHARMM forces and energies with energy terms or methods derived from machine learning or other sources, written in Python, CUDA, or OpenCL and expressed as Python callable routines is introduced together with analogous functions callable during dynamics calculations. Integration of Python-based graphical engines for visualization of simulation models and results is also accessible. Loosely coupled parallelism is available for workflows such as free energy calculations, using MBAR/TI approaches or high-throughput multisite λ-dynamics (MSλD) free energy methods, string path optimization calculations, replica exchange, and molecular docking with a new Python-based CDOCKER module. CHARMM accelerated platform kernels through the CHARMM/OpenMM API, CHARMM/DOMDEC, and CHARMM/BLaDE API are also readily integrated into this Python framework. We anticipate that pyCHARMM will be a robust platform for the development of comprehensive and complex workflows utilizing Python and its extensive functionality as well as an optimal platform for users to learn molecular modeling methods and practices within a Python-friendly environment such as Jupyter Notebooks.
CHARMM 是最早解决分子动力学和生物大分子及其配体(如小分子配体)建模问题的程序之一,其方法和功能非常丰富。当与高度发达的蛋白质、核酸、小分子、脂质、糖和其他生物相关构建块的 CHARMM 参数以及多功能的 CHARMM 脚本语言结合使用时,CHARMM 一直是生物大分子建模研究的领先平台。为了进一步增强访问和使用 CHARMM 功能的实用性,以满足与建模生物系统相关的日益复杂的工作流程的需求,我们引入了 pyCHARMM,即 Python 绑定、函数和模块,以补充和扩展 CHARMM 中已经提供的广泛建模工具和方法。这些包括访问与系统相关的 CHARMM 函数生成变量(psf)、坐标、速度和力、原子选择变量以及力场相关参数。引入了一种能力,可以使用 Python、CUDA 或 OpenCL 编写的源自机器学习或其他来源的能量项或方法来增强 CHARMM 力和能量,并将其表示为 Python 可调用例程,同时还引入了在动力学计算期间可调用的类似函数。还可以访问基于 Python 的图形引擎,用于模拟模型和结果的可视化。松散耦合的并行性可用于自由能计算、MBAR/TI 方法或高通量多站点 λ 动力学(MSλD)自由能方法、字符串路径优化计算、 replica 交换以及使用新的基于 Python 的 CDOCKER 模块进行分子对接等工作流程。通过 CHARMM/OpenMM API、CHARMM/DOMDEC 和 CHARMM/BLaDE API 也可以轻松地将 CHARMM 加速平台内核集成到这个 Python 框架中。我们预计,pyCHARMM 将成为一个强大的平台,用于开发利用 Python 及其广泛功能的全面而复杂的工作流程,并且是用户在 Jupyter Notebooks 等 Python 友好环境中学习分子建模方法和实践的最佳平台。