文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

探索不同侧屈位置下颈椎旋转手法的生物力学机制:一项有限元分析

Exploring the biomechanical mechanisms of cervical rotation manipulation in different lateral bending positions: a finite element analysis.

作者信息

Weng Rui, Lin Dongxin, Yang Han, Xie Siyuan, Chen Cairui, Yu Yaoshuai, Yang Geng, Xie Pusheng, Zhao Liang, Li Yikai, Huang Xuecheng

机构信息

Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 Beihuan Avenue, Futian District, Shenzhen, Guangdong, 518000, China.

School of Traditional Chinese Medicine, Southern Medical University, 1023 Satai South Road, Baiyun District, Guangzhou, Guangdong, 510000, China.

出版信息

BMC Musculoskelet Disord. 2025 Aug 2;26(1):745. doi: 10.1186/s12891-025-08991-4.


DOI:10.1186/s12891-025-08991-4
PMID:40753413
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12317557/
Abstract

OBJECTIVE: To investigate the biomechanical mechanism of cervical rotation manipulation (CRM) in different lateral bending positions. METHODS: A 27-year-old Asian male patient with cervical spondylotic radiculopathy due to left posterior cervical disc protrusion and compression of nerve roots was recruited. The CT scan data of his skull and cervical spine were extracted to construct finite element models of the skull and whole cervical spine. After model verification, the key parameters of CRM were loaded into the model, and the effects of CRM on the structure of cervical spine were analyzed. RESULTS: In left lateral bending, neutral and right lateral bending positions, the maximum Mises stresses of C5/6 annulus fibrosus were 1.545, 0.951 and 0.917 Mpa, the maximum Mises stresses of nucleus pulposus were 0.168, 0.139 and 0.146 Mpa, and the maximum Mises stresses of facet joints were 3.973, 2.186 and 1.369 Mpa, respectively, and those of the spinal cord and nerve roots were 2.692, 2.547, and 3.150 Mpa respectively. Regarding the anterior displacement of the cervical intervertebral disc on the herniated side, the maximum values were 1.060, 1.067, and 0.865 mm respectively. For the area of the intervertebral foramen on the affected sidearea, it was 34.393 mm² before the manipulation, and after the manipulation, it was 39.588, 39.724, and 41.668 mm² under the three positions respectively. CONCLUSION: In CRM, the neutral position enlarges the intervertebral foramen volume and reduces intervertebral disc stress, with low spinal cord and nerve root stress and injury risk. In the right lateral bending position (lateral bending on the healthy side), the stresses in the annulus fibrosus and facet joints are minimal, and the intervertebral foramen expansion is most obvious, but the stresses in the spinal cord and nerve roots are the highest. In the left lateral bending position (lateral bending on the herniated side), the stresses in the intervertebral disc and facet joints are the highest, but it is conducive to the anterior displacement of the herniated intervertebral disc and enables smoother operation. Clinicians should select the appropriate operating position according to the actual situation.

摘要

目的:探讨颈椎旋转手法(CRM)在不同侧屈位的生物力学机制。 方法:招募一名27岁因左后颈椎间盘突出压迫神经根导致神经根型颈椎病的亚洲男性患者。提取其头颅和颈椎的CT扫描数据,构建头颅和全颈椎的有限元模型。模型验证后,将CRM的关键参数加载到模型中,分析CRM对颈椎结构的影响。 结果:在左侧屈、中立位和右侧屈位时,C5/6纤维环的最大米塞斯应力分别为1.545、0.951和0.917兆帕,髓核的最大米塞斯应力分别为0.168、0.139和0.146兆帕,小关节的最大米塞斯应力分别为3.973、2.186和1.369兆帕,脊髓和神经根的最大米塞斯应力分别为2.692、2.547和3.150兆帕。关于突出侧颈椎间盘的前移位,最大值分别为1.060、1.067和0.865毫米。对于患侧椎间孔面积,手法操作前为34.393平方毫米,手法操作后,在三个位置下分别为39.588、39.724和41.668平方毫米。 结论:在CRM中,中立位可扩大椎间孔容积并降低椎间盘应力,脊髓和神经根应力及损伤风险较低。在右侧屈位(向健侧侧屈)时,纤维环和小关节的应力最小,椎间孔扩大最明显,但脊髓和神经根的应力最高。在左侧屈位(向突出侧侧屈)时,椎间盘和小关节的应力最高,但有利于突出椎间盘的前移位且操作更顺畅。临床医生应根据实际情况选择合适的操作体位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/5c22bdfb9bc4/12891_2025_8991_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/130d8617fdd7/12891_2025_8991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/a13b92700eb9/12891_2025_8991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/e2210e652f71/12891_2025_8991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/c258900a2941/12891_2025_8991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/1619a6f37cdf/12891_2025_8991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/320c7bf82b2b/12891_2025_8991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/5c22bdfb9bc4/12891_2025_8991_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/130d8617fdd7/12891_2025_8991_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/a13b92700eb9/12891_2025_8991_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/e2210e652f71/12891_2025_8991_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/c258900a2941/12891_2025_8991_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/1619a6f37cdf/12891_2025_8991_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/320c7bf82b2b/12891_2025_8991_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85c6/12317557/5c22bdfb9bc4/12891_2025_8991_Fig7_HTML.jpg

相似文献

[1]
Exploring the biomechanical mechanisms of cervical rotation manipulation in different lateral bending positions: a finite element analysis.

BMC Musculoskelet Disord. 2025-8-2

[2]
Three different screw trajectories in single segment fixation: a finite element analysis and biomechanical study.

Spine J. 2025-7

[3]
Biomechanical and clinical comparison of different prosthetic in reconstruction following total spondylectomy in the thoracolumbar spine: based on finite element analysis and clinical data.

Front Bioeng Biotechnol. 2025-7-1

[4]
Biomechanical differences of three cephalic fixation methods for patients with basilar invagination and atlantoaxial dislocation in the setting of congenital atlas occipitalization: a finite element analysis.

Spine J. 2025-2

[5]
Biomechanical analysis of screw constructs for atlantoaxial fixation in cadavers: a systematic review and meta-analysis.

J Neurosurg Spine. 2015-2

[6]
Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

Proc Inst Mech Eng H. 2016-7

[7]
Clinical effect of occipitocervical and subaxial cervical fusion constructs on range of motion: comprehensive guide based on biomechanical cadaveric testing on 1009 motion segments.

J Neurosurg Spine. 2025-7-4

[8]
Investigating the effects of geometrical parameters of an artificial cervical disc in vulnerable neck positions on the stress distribution in the spine using 3D finite element analysis.

Proc Inst Mech Eng H. 2025-7

[9]
Finite element analysis of percutaneous uniplanar screw fixation in the treatment of thoracolumbar fractures.

Eur J Med Res. 2025-6-23

[10]
Biomechanical analysis of a newly designed and 3D printed plate-locking interbody cage: an observational study of finite element analysis.

Sci Rep. 2025-1-28

本文引用的文献

[1]
Cervical Rotation-Traction Manipulation for Cervical Radiculopathy: A Systematic Review and Meta-Analysis of Randomized Control Trials.

J Pain Res. 2024-11-28

[2]
The immediate effect of cervical rotation-traction manipulation on cervical paravertebral soft tissue: a study using soft tissue tension cloud chart technology.

BMC Musculoskelet Disord. 2024-2-29

[3]
Rotation-traction manipulation induced intradiskal pressure changes in cervical spine-an study.

Front Bioeng Biotechnol. 2024-2-8

[4]
Is neck pain treatable with surgery?

Eur Spine J. 2024-3

[5]
Comparison of biomechanical parameters of two Chinese cervical spine rotation manipulations based on motion capture and finite element analysis.

Front Bioeng Biotechnol. 2023-7-27

[6]
Immediate Effects of a Single Session of Cervical Spine Manipulation on Cervical Movement Patterns in People With Nonspecific Neck Pain: A Randomized Controlled Trial.

J Manipulative Physiol Ther. 2023-1

[7]
Angular Kinematics of Chiropractic Supine Cervical Spine Manipulation: Rotational Measures and Comparisons to Doctor and Recipient Perceptions.

J Manipulative Physiol Ther. 2022-9

[8]
Effects of cervical rotatory manipulation on the cervical spinal cord complex with ossification of the posterior longitudinal ligament in the vertebral canal: A finite element study.

Front Bioeng Biotechnol. 2023-1-13

[9]
The Effect of Anterior-Only, Posterior-Only, and Combined Anterior Posterior Fixation for Cervical Spine Injury with Soft Tissue Injury: A Finite Element Analysis.

World Neurosurg. 2023-3

[10]
Association between cervical artery dissection and spinal manipulative therapy -a medicare claims analysis.

BMC Geriatr. 2022-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索