OseR是一种细菌氧化还原传感器,通过半胱氨酸硫醇开关调节麦角硫因摄取,增强氧化应激抗性和毒力。

OseR, a bacterial redox sensor, regulates ergothioneine uptake via a Cys thiol switch, enhancing oxidative stress resistance and virulence.

作者信息

Zhu Xinchi, Wu Yifan, Yao Huochun, Wu Zongfu

机构信息

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China.

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangdong Haid Institute of Animal Husbandry & Veterinary, Guangzhou, 511400, China.

出版信息

Redox Biol. 2025 Jul 31;86:103790. doi: 10.1016/j.redox.2025.103790.

Abstract

Ergothioneine (ET), a low-molecular-weight (LMW) thiol, serves as a potent antioxidant. While only a limited number of Actinomycetes and fungi can synthesize ET, most microorganisms acquire it from external sources. Recently, a microbial ET transporter system (EtUV) was identified in Helicobacter pylori and Streptococcus pneumoniae, but the regulatory mechanisms controlling EtUV in bacteria remain unknown. In this study, we identified and characterized OseR, a novel MarR family repressor in Streptococcus suis, a significant pathogen causing systemic diseases such as septicemia and meningitis in pigs and humans. We demonstrated that OseR senses oxidative stress through a thiol switch at Cys35, which regulates the ET transport system EtUV. Under oxidative stress, OseR dissociates from the promoter region of the ET transport operon due to the formation of an intermolecular disulfide bond, leading to the activation of EtUV expression. Our findings reveal that OseR not only controls ET transport but also modulates other LMW thiol transport pathways, including glutathione and cysteine, as well as genes involved in oxidative stress responses. Deletion or mutation of oseR significantly impairs oxidative stress tolerance, survival in mouse macrophages, and virulence in mice. Similarly, deletion or mutation of etU, which encodes a transmembrane permease essential for ET uptake, markedly reduces oxidative stress tolerance and virulence in mice. Importantly, our results suggest that OseR-mediated regulation of the ET transport system, driven by a thiol-based switch, may be conserved across bacterial species, highlighting a broader role for OseR in bacterial adaptation to host environments. This study advances our understanding of the regulatory mechanisms governing ET uptake in bacteria and provides new insights into the link between ET and bacterial pathogenicity.

摘要

麦角硫因(ET)是一种低分子量(LMW)硫醇,是一种有效的抗氧化剂。虽然只有少数放线菌和真菌能够合成ET,但大多数微生物是从外部来源获取它的。最近,在幽门螺杆菌和肺炎链球菌中发现了一种微生物ET转运系统(EtUV),但细菌中控制EtUV的调控机制仍然未知。在本研究中,我们鉴定并表征了猪链球菌中的一种新型MarR家族阻遏蛋白OseR,猪链球菌是一种重要的病原体,可导致猪和人类发生败血症和脑膜炎等全身性疾病。我们证明,OseR通过Cys35处的硫醇开关感知氧化应激,从而调节ET转运系统EtUV。在氧化应激下,由于分子间二硫键的形成,OseR从ET转运操纵子的启动子区域解离,导致EtUV表达激活。我们的研究结果表明,OseR不仅控制ET转运,还调节其他低分子量硫醇转运途径,包括谷胱甘肽和半胱氨酸,以及参与氧化应激反应的基因。oseR的缺失或突变显著损害氧化应激耐受性、在小鼠巨噬细胞中的存活能力以及在小鼠中的毒力。同样,编码ET摄取所必需的跨膜通透酶的etU的缺失或突变显著降低了小鼠的氧化应激耐受性和毒力。重要的是,我们的结果表明,由硫醇开关驱动的OseR介导的ET转运系统调控可能在细菌物种中保守,突出了OseR在细菌适应宿主环境中的更广泛作用。这项研究推进了我们对细菌中ET摄取调控机制的理解,并为ET与细菌致病性之间的联系提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49d3/12341727/d199df9161eb/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索