文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于大语言模型的管道,用于从临床记录中的患者主诉和病史中提取信息以进行严重程度评估。

A large language model based pipeline for extracting information from patient complaint and anamnesis in clinical notes for severity assessment.

作者信息

Gao Hui, Wang Kaipeng, Yuan Yuan, Wang Yueguo, Liu Qingyuan, Wang Yulan, Sun Jian, Wang Wenwen, Wang Huanli, Zhou Shusheng, Jin Kui, Zhang Mengping, Lai Yinglei

机构信息

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.

School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China.

出版信息

Sci Rep. 2025 Jul 14;15(1):25345. doi: 10.1038/s41598-025-07649-4.


DOI:10.1038/s41598-025-07649-4
PMID:40659653
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12260085/
Abstract

Identifying patients with critical illness in emergency departments (EDs) is an ongoing challenge, partly due to the limited information available at the time of admission. The clinical notes in patient records have already received attention for the value of improving prediction. Recent large language models (LLMs) have demonstrated their promising performance. However, the utilization of LLMs for analyzing clinical notes has not been extensively investigated. To improve the severity assessment of illness and the prediction of triage level, we developed a pipeline for utilizing LLMs (e.g. ChatGLM-2, GLM-4 and Alpaca-2) to extract information from patient complaint and anamnesis in clinical notes. In this pipeline, a LLM is supplied with the text input including complaint and anamnesis of a patient, where the input is further constructed by a prompt template, in-context learning (ICL), and retrieval-augmented generation (RAG). Then a severity score is extracted from the LLM, which is further integrated into a predictive model for improving its performance. We demonstrated the effectiveness of our pipeline based on the patient records derived from Chinese Emergency Triage, Assessment, and Treatment (CETAT) database. The extracted score were be incorporated into logistic regression as a predictor. At early stage, as vital signs were typically not yet measured, the predictive value of patient complaint and anamnesis was illustrated (evidenced by an improvement in AUC-ROC from 0.746 to 0.802). At later stage, vital signs became available, the enhancements in prediction attributable to the score were weaker, but still was observed with statistical significance in most cases. The recent LLMs are capable of extracting valuable information from clinical notes for identifying critical illness. The effectiveness has been illustrated in our study. It is still necessary to develop more efficient methods based on LLMs in order to achieve better performance.

摘要

在急诊科识别重症患者一直是一项挑战,部分原因是入院时可用信息有限。患者记录中的临床笔记因其在改善预测方面的价值而受到关注。最近的大语言模型(LLMs)已展现出其令人期待的性能。然而,利用大语言模型分析临床笔记的研究尚未广泛开展。为了改进疾病严重程度评估和分诊级别预测,我们开发了一个利用大语言模型(如ChatGLM - 2、GLM - 4和Alpaca - 2)从临床笔记中的患者主诉和病史中提取信息的流程。在这个流程中,大语言模型被提供包含患者主诉和病史的文本输入,其中输入通过提示模板、上下文学习(ICL)和检索增强生成(RAG)进一步构建。然后从大语言模型中提取严重程度评分,该评分进一步整合到预测模型中以提高其性能。我们基于源自中国急诊分诊、评估和治疗(CETAT)数据库的患者记录证明了我们流程的有效性。提取的评分被纳入逻辑回归作为预测因子。在早期,由于通常尚未测量生命体征,展示了患者主诉和病史的预测价值(AUC - ROC从0.746提高到0.802证明)。在后期,生命体征可用时,评分对预测的增强作用较弱,但在大多数情况下仍具有统计学意义。最近的大语言模型能够从临床笔记中提取有价值的信息以识别重症。我们的研究已证明了其有效性。为了实现更好的性能,仍有必要开发基于大语言模型的更高效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/0e8786846eba/41598_2025_7649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/747125fc69fc/41598_2025_7649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/ec13154742fe/41598_2025_7649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/70e1f5f4140d/41598_2025_7649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/c3b732103da4/41598_2025_7649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/80f276836402/41598_2025_7649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/0e8786846eba/41598_2025_7649_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/747125fc69fc/41598_2025_7649_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/ec13154742fe/41598_2025_7649_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/70e1f5f4140d/41598_2025_7649_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/c3b732103da4/41598_2025_7649_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/80f276836402/41598_2025_7649_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addc/12260085/0e8786846eba/41598_2025_7649_Fig6_HTML.jpg

相似文献

[1]
A large language model based pipeline for extracting information from patient complaint and anamnesis in clinical notes for severity assessment.

Sci Rep. 2025-7-14

[2]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[3]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[6]
Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

J Med Internet Res. 2025-6-11

[7]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[9]
Toward Cross-Hospital Deployment of Natural Language Processing Systems: Model Development and Validation of Fine-Tuned Large Language Models for Disease Name Recognition in Japanese.

JMIR Med Inform. 2025-7-8

[10]
Utilizing large language models for detecting hospital-acquired conditions: an empirical study on pulmonary embolism.

J Am Med Inform Assoc. 2025-5-1

本文引用的文献

[1]
Early identification of high-risk patients admitted to emergency departments using vital signs and machine learning.

World J Emerg Med. 2025

[2]
The TRIPOD-LLM reporting guideline for studies using large language models.

Nat Med. 2025-1

[3]
Toward expert-level medical question answering with large language models.

Nat Med. 2025-3

[4]
Using Large Language Models to Extract Core Injury Information From Emergency Department Notes.

J Korean Med Sci. 2024-12-2

[5]
Matching patients to clinical trials with large language models.

Nat Commun. 2024-11-18

[6]
Development of fully automated models for staging liver fibrosis using non-contrast MRI and artificial intelligence: a retrospective multicenter study.

EClinicalMedicine. 2024-10-17

[7]
Prevalence, predictors, and patterns of patient reported non-motor outcomes six months after stroke: a prospective cohort study.

Lancet Reg Health Eur. 2024-10-19

[8]
Glucagon-like peptide-1 receptor agonists before upper gastrointestinal endoscopy and risk of pulmonary aspiration or discontinuation of procedure: cohort study.

BMJ. 2024-10-22

[9]
Impact of CCR5Δ32 on the risk of infection, Staphylococcus aureus carriage, and plasma concentrations of chemokines in Danish blood donors.

EBioMedicine. 2024-11

[10]
Climate emotions, thoughts, and plans among US adolescents and young adults: a cross-sectional descriptive survey and analysis by political party identification and self-reported exposure to severe weather events.

Lancet Planet Health. 2024-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索