Suppr超能文献

集成全球导航卫星系统(GNSS)与风激声导叶面积密度的果园变量喷雾方法

Orchard variable-rate spraying method integrating GNSS and wind-excited audio-conducted leaf area density.

作者信息

Zhao Hangxing, Yang Shenghui, Li Wenwei, Feng Han, Jiang Shijie, Liu Weihong, Li Jingbin, Zheng Yongjun, Zhang Songchao

机构信息

Key Laboratory of Modern Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Nanjing, China.

College of Engineering, China Agricultural University, Beijing, China.

出版信息

Front Plant Sci. 2025 Jul 18;16:1621080. doi: 10.3389/fpls.2025.1621080. eCollection 2025.

Abstract

INTRODUCTION

Conventional air-assisted sprayers used in orchards often suffer from excessive pesticide waste, high residue levels, and uneven droplet distribution on fruit tree canopies. Precision spraying technologies have emerged to address these limitations by enabling dynamic regulation of spray parameters according to canopy characteristics. Among these, leaf area density is a key indicator for describing canopy sparseness. However, accurate and automated measurement of canopy leaf area density remains challenging due to leaf shading effects. As a result, few fully functional variable-rate spraying systems have been developed based on this parameter.

METHODS

This study presents a variable-rate spraying method that integrates global navigation satellite system (GNSS) positioning with wind-excited audio-conducted estimation of canopy leaf area density. A self-propelled orchard spraying platform was developed to acquire real-time GNSS positioning and audio-conducted canopy leaf area density data. Based on this, a method was established for generating prescription maps that integrate spatial positioning and canopy density information. A variable-rate spray control model and algorithm were then constructed to regulate spray flow according to the spatial distribution of leaf area density across the orchard.

RESULTS

Field experiments demonstrated that the system achieved a mean relative error of only 5.52% in spray flow rate regulation. Compared with conventional constant-rate spraying, the variable-rate mode reduced the longitudinal coefficient of variation (CV) of droplet deposition by 55.75% on adaxial leaf surfaces and by 33.22% on abaxial surfaces, with a maximum reduction of 62.32% in transverse CV. Ground runoff of spray solution was reduced by 62.29%, and droplet deposition density on leaf surfaces exceeded 25 droplets/cm², meeting the standard for low-volume insecticide application.

DISCUSSION

The integration of GNSS and wind-excited audio sensing for real-time canopy density assessment enables more precise and efficient pesticide application in orchards. This system significantly improves droplet deposition uniformity while reducing environmental losses, offering a promising technical solution for the development of intelligent and sustainable plant protection equipment.

摘要

引言

果园中使用的传统气辅喷雾器常常存在农药浪费过多、残留水平高以及果树冠层上液滴分布不均等问题。精密喷雾技术应运而生,通过根据冠层特征动态调节喷雾参数来解决这些局限性。其中,叶面积密度是描述冠层稀疏程度的关键指标。然而,由于叶片遮光效应,准确且自动地测量冠层叶面积密度仍然具有挑战性。因此,基于该参数开发的全功能变量喷雾系统很少。

方法

本研究提出了一种变量喷雾方法,该方法将全球导航卫星系统(GNSS)定位与风激音频传导估计冠层叶面积密度相结合。开发了一个自行式果园喷雾平台,以获取实时GNSS定位和风激音频传导冠层叶面积密度数据。在此基础上,建立了一种生成整合空间定位和冠层密度信息的处方图的方法。然后构建了一个变量喷雾控制模型和算法,以根据果园中叶面积密度的空间分布来调节喷雾流量。

结果

田间试验表明,该系统在喷雾流量调节方面的平均相对误差仅为5.52%。与传统的常量喷雾相比,变量喷雾模式使正面叶表面液滴沉积的纵向变异系数(CV)降低了55.75%,背面降低了33.22%,横向CV最大降低了62.32%。喷雾溶液的地面径流减少了62.29%,叶表面的液滴沉积密度超过25滴/平方厘米,符合低容量杀虫剂施用标准。

讨论

将GNSS与风激音频传感相结合用于实时冠层密度评估,能够在果园中实现更精确、高效的农药施用。该系统显著提高了液滴沉积均匀性,同时减少了对环境的损失,为智能和可持续植物保护设备的发展提供了一种有前景的技术解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e5b/12313613/1062a77abf7b/fpls-16-1621080-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验