Suppr超能文献

一种用于增强异构医疗机构联合建模的个性化联邦学习方法。

A personalized federated learning approach to enhance joint modeling for heterogeneous medical institutions.

作者信息

Ye Hong, Zhang Xiangzhou, Liu Kang, Liu Ziyuan, Chen Weiqi, Liu Bo, Ngai Eric Wt, Hu Yong

机构信息

Big Data Decision Institute, Jinan University, Guangzhou, China.

School of Management, Jinan University, Guangzhou, China.

出版信息

Digit Health. 2025 Jul 29;11:20552076251360861. doi: 10.1177/20552076251360861. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Federated Learning (FL) offers a privacy-preserving solution for multi-party data collaboration in smart healthcare. However, the data heterogeneity among hospitals and among patients often results in suboptimal performance for some hospitals when applying a global FL model. Current clustering-based FL methods struggle to adapt to complex and diverse data distributions, negatively impacting model performance.

METHODS

We propose a novel framework, Federated Gaussian Mixture Clustering (FedGMC), which leverages Gaussian Mixture Clustering to train personalized FL models. FedGMC determines the optimal number of clusters prior to the FL process, reducing the time and computational cost associated with traversing multiple clustering configurations in existing approaches.

RESULTS

The FedGMC framework was evaluated using real-world eICU datasets with various classifiers and performance metrics. Experimental results show that FedGMC outperforms other baseline methods in terms of the overall performance of combining two classifiers and two performance metrics. Moreover, it mitigates the risk of performance degraded for participating hospitals following FL.

CONCLUSIONS

The FedGMC framework effectively addresses clinical heterogeneity, enhancing predictive performance and ensuring fairness among participating medical institutions. These improvements increase the willingness of data owners to engage in the collaboration FL initiatives.

摘要

背景

联邦学习(FL)为智能医疗中的多方数据协作提供了一种隐私保护解决方案。然而,医院之间以及患者之间的数据异质性在应用全局FL模型时,常常导致一些医院的性能欠佳。当前基于聚类的FL方法难以适应复杂多样的数据分布,对模型性能产生负面影响。

方法

我们提出了一种新颖的框架,即联邦高斯混合聚类(FedGMC),它利用高斯混合聚类来训练个性化的FL模型。FedGMC在FL过程之前确定最优聚类数,减少了现有方法中遍历多种聚类配置所带来的时间和计算成本。

结果

使用具有各种分类器和性能指标的真实世界eICU数据集对FedGMC框架进行了评估。实验结果表明,在结合两种分类器和两种性能指标的整体性能方面,FedGMC优于其他基线方法。此外,它降低了参与FL的医院性能下降的风险。

结论

FedGMC框架有效地解决了临床异质性问题,提高了预测性能,并确保了参与医疗机构之间的公平性。这些改进提高了数据所有者参与协作式FL计划的意愿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56bf/12314237/2cce8bcbfe25/10.1177_20552076251360861-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验