Suppr超能文献

CRISP:一种用于重症监护病房(ICU)晚期死亡率预测的因果关系引导深度学习框架。

CRISP: A causal relationships-guided deep learning framework for advanced ICU mortality prediction.

作者信息

Wang Linna, Guo Xinyu, Shi Haoyue, Ma Yuehang, Bao Han, Jiang Lihua, Zhao Li, Feng Ziliang, Zhu Tao, Lu Li

机构信息

College of Computer Science, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan, 610065, China.

Department of Health Policy and Management, West China School of Public Health and West China Fourth Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan, 610041, China.

出版信息

BMC Med Inform Decis Mak. 2025 Apr 15;25(1):165. doi: 10.1186/s12911-025-02981-1.

Abstract

BACKGROUND

Mortality prediction is critical in clinical care, particularly in intensive care units (ICUs), where early identification of high-risk patients can inform treatment decisions. While deep learning (DL) models have demonstrated significant potential in this task, most suffer from limited generalizability, which hinders their widespread clinical application. Additionally, the class imbalance in electronic health records (EHRs) complicates model training. This study aims to develop a causally-informed prediction model that incorporates underlying causal relationships to mitigate class imbalance, enabling more stable mortality predictions.

METHODS

This study introduces the CRISP model (Causal Relationship Informed Superior Prediction), which leverages native counterfactuals to augment the minority class and constructs patient representations by incorporating causal structures to enhance mortality prediction. Patient data were obtained from the public MIMIC-III and MIMIC-IV databases, as well as an additional dataset from the West China Hospital of Sichuan University (WCHSU).

RESULTS

A total of 69,190 ICU cases were included, with 30,844 cases from MIMIC-III, 27,362 cases from MIMIC-IV, and 10,984 cases from WCHSU. The CRISP model demonstrated stable performance in mortality prediction across the 3 datasets, achieving AUROC (0.9042-0.9480) and AUPRC (0.4771-0.7611). CRISP's data augmentation module showed predictive performance comparable to commonly used interpolation-based oversampling techniques.

CONCLUSION

CRISP achieves better generalizability across different patient groups, compared to various baseline algorithms, thereby enhancing the practical application of DL in clinical decision support.

TRIAL REGISTRATION

Trial registration information for the WCHSU data is available on the Chinese Clinical Trial Registry website ( http://www.chictr.org.cn ), with the registration number ChiCTR1900025160. The recruitment period for the data was from August 5, 2019, to August 31, 2021.

摘要

背景

死亡率预测在临床护理中至关重要,尤其是在重症监护病房(ICU),早期识别高危患者可为治疗决策提供依据。虽然深度学习(DL)模型在这项任务中已显示出巨大潜力,但大多数模型的泛化能力有限,这阻碍了它们在临床中的广泛应用。此外,电子健康记录(EHR)中的类别不平衡使模型训练变得复杂。本研究旨在开发一种因果关系明确的预测模型,该模型纳入潜在因果关系以减轻类别不平衡,从而实现更稳定的死亡率预测。

方法

本研究引入了CRISP模型(因果关系明确的卓越预测模型),该模型利用天然反事实来扩充少数类别,并通过纳入因果结构来构建患者表征,以增强死亡率预测。患者数据来自公开的MIMIC - III和MIMIC - IV数据库,以及四川大学华西医院(WCHSU)的一个额外数据集。

结果

共纳入69190例ICU病例,其中30844例来自MIMIC - III,27362例来自MIMIC - IV,10984例来自WCHSU。CRISP模型在3个数据集中的死亡率预测方面表现稳定,AUROC为0.9042 - 0.9480,AUPRC为0.4771 - 0.7611。CRISP的数据增强模块显示出与常用的基于插值的过采样技术相当的预测性能。

结论

与各种基线算法相比,CRISP在不同患者群体中具有更好的泛化能力,从而增强了DL在临床决策支持中的实际应用。

试验注册

WCHSU数据的试验注册信息可在中国临床试验注册网站(http://www.chictr.org.cn)上获取,注册号为ChiCTR1900025160。数据招募期为2019年8月5日至2021年8月31日。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a870/12001402/ec9dfdc59172/12911_2025_2981_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验