Suppr超能文献

一种用于有创机械通气的慢性阻塞性肺疾病急性加重期患者的基于机器学习的增强型预后预测模型。

An enhanced machine learning-based prognostic prediction model for patients with AECOPD on invasive mechanical ventilation.

作者信息

Fu Yujie, Liu Yining, Zhong Chuyue, Heidari Ali Asghar, Liu Lei, Yu Sudan, Chen Huiling, Wu Peiliang

机构信息

Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.

The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China.

出版信息

iScience. 2024 Oct 23;27(12):111230. doi: 10.1016/j.isci.2024.111230. eCollection 2024 Dec 20.

Abstract

Chronic obstructive pulmonary disease (COPD) causes irreversible airflow limitations, increasing global morbidity and mortality. Acute exacerbations (AECOPDs) worsen symptoms and may require mechanical ventilation, leading to complications. Understanding factors affecting AECOPD prognosis during mechanical ventilation is crucial. Inspired by rime ice physics, the RIME algorithm has been proposed but it had limitations in feature selection and solution space exploration. We improve RIME by adding a dispersed foraging mechanism and differential crossover operator, creating DDRIME. Our study analyzes patient data to identify factors related to invasive mechanical ventilation in AECOPD. DDRIME's performance is tested against RIME on 83 functions and 12 public datasets for feature selection. It outperformed most algorithms, with bDDRIME_KNN showing high accuracy in predicting AECOPD outcomes. Key indicators-chronic heart failure (CHF), D-dimer (D-D), fungal infection (FI), and pectoral muscle area (PMA)-predicted prognosis with >0.98 accuracy. bDDRIME is thus a valuable tool for predicting AECOPD patients' outcomes on mechanical ventilation.

摘要

慢性阻塞性肺疾病(COPD)会导致不可逆的气流受限,增加全球发病率和死亡率。急性加重期慢性阻塞性肺疾病(AECOPD)会使症状恶化,可能需要机械通气,进而引发并发症。了解机械通气期间影响AECOPD预后的因素至关重要。受rime冰物理学启发,提出了RIME算法,但它在特征选择和解决方案空间探索方面存在局限性。我们通过添加分散觅食机制和差分交叉算子来改进RIME,创建了DDRIME。我们的研究分析患者数据,以识别与AECOPD有创机械通气相关的因素。在83个函数和12个公共数据集上针对RIME测试DDRIME在特征选择方面的性能。它优于大多数算法,其中bDDRIME_KNN在预测AECOPD结果方面显示出高精度。关键指标——慢性心力衰竭(CHF)、D-二聚体(D-D)、真菌感染(FI)和胸肌面积(PMA)——预测预后的准确率>0.98。因此,bDDRIME是预测AECOPD患者机械通气结果的有价值工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc1a/11617955/ca134089636d/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验