Keeper Jeremy Horst, Seto Jong, Oren Ersin Emre, Horst Orapin V, Hung Ling-Hong, Samudrala Ram
Oral Health Sciences, University of Washington, Seattle, WA, United States.
Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States.
Front Mater. 2024;11. doi: 10.3389/fmats.2024.1436379. Epub 2024 Dec 19.
Extracellular matrices direct the formation of mineral constituents into self-assembled mineralized tissues. We investigate the protein and mineral constituents to better understand the underlying mechanisms that lead to mineralized tissue formation. Specifically, we study the protein-hydroxyapatite interactions that govern the development and homeostasis of teeth and bone in the oral cavity. Characterization would enable improvements in the design of peptides to regenerate mineralized tissues and control attachments such as ligaments and dental plaque. Progress has been limited because no available methods produce robust data for assessing organic-mineral interfaces. We show that tooth enamel pellicle peptides contain subtle sequence similarities that encode hydroxyapatite binding mechanisms by segregating pellicle peptides from control sequences using our previously developed substitution matrix-based peptide comparison protocol with improvements. Sampling diverse matrices, adding biological control sequences, and optimizing matrix refinement algorithms improve discrimination from 0.81 to 0.99 AUC in leave-one-out experiments. Other contemporary methods fail regarding this problem. We find hydroxyapatite interaction sequence patterns by applying the resulting selected refined matrix ("pellitrix") to cluster the peptides and build subgroup alignments. We identify putative hydroxyapatite maturation domains by application to enamel biomineralization proteins and prioritize putative novel pellicle peptides identified by In-StageTip (iST) mass spectrometry. The sequence comparison protocol outperforms other contemporary options for this small and heterogeneous group and is generalized for application to any group of peptides. As a result, this platform has broad impacts on peptide design, with direct applications to microbiology, biomaterial design, and tissue engineering.
细胞外基质引导矿物质成分形成自组装矿化组织。我们研究蛋白质和矿物质成分,以更好地理解导致矿化组织形成的潜在机制。具体而言,我们研究控制口腔中牙齿和骨骼发育及内稳态的蛋白质-羟基磷灰石相互作用。表征将有助于改进肽的设计,以再生矿化组织并控制诸如韧带和牙菌斑等附着物。由于没有可用的方法能产生用于评估有机-矿物质界面的可靠数据,进展有限。我们表明,牙釉质薄膜肽含有细微的序列相似性,通过使用我们先前开发的基于替换矩阵的肽比较协议并加以改进,将薄膜肽与对照序列区分开来,从而编码羟基磷灰石结合机制。对不同基质进行采样、添加生物对照序列以及优化基质细化算法,在留一法实验中将判别能力从0.81提高到0.99 AUC。其他当代方法在这个问题上存在不足。我们通过应用所得的选定细化矩阵(“pellitrix”)对肽进行聚类并构建亚组比对,从而找到羟基磷灰石相互作用序列模式。我们通过将其应用于牙釉质生物矿化蛋白来识别推定的羟基磷灰石成熟结构域,并对通过原位尖端(iST)质谱法鉴定的推定新型薄膜肽进行优先级排序。对于这个小的异质肽组,该序列比较协议优于其他当代方法,并且可推广应用于任何肽组。因此,这个平台对肽设计有广泛影响,可直接应用于微生物学、生物材料设计和组织工程。