文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

转录组与孟德尔随机化的联合分析揭示了与脓毒症葡萄糖代谢相关的生物标志物 和 。 (原文中“and”前后内容缺失,以上是根据现有英文翻译的结果)

Combined Analysis of Transcriptome and Mendelian Randomization Reveals and as Biomarkers Related to Glucose Metabolism in Sepsis.

作者信息

Ma Jie, Li Wendi, Ma Qianqian, Ding Liying, Wang Zhaoyun, Wang Rong, Huang Yanan, Ma Gang, Gao Jun

机构信息

Department of Anesthesia and Perioperative Medicine, First People's Hospital of Yinchuan, The Second Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, 750001, People's Republic of China.

Department of Anesthesia and Perioperative Medicine, General Hospital of Ningxia Medical University, The First Clinical Medical College of Ningxia Medical University, Yinchuan, Ningxia, 750004, People's Republic of China.

出版信息

J Inflamm Res. 2025 Jul 30;18:10213-10234. doi: 10.2147/JIR.S528347. eCollection 2025.


DOI:10.2147/JIR.S528347
PMID:40756416
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12318527/
Abstract

INTRODUCTION: This study aimed to identify diagnostic and therapeutic biomarkers related to glucose metabolism in sepsis, as hyperglycemia and blood glucose fluctuations influence sepsis progression. METHODS: Datasets from public databases were analyzed using various methods, including differential expression analysis, PPI network screening, machine learning algorithms and Mendelian randomization. A nomogram model was developed, and biomarker functions were explored through enrichment analysis, immunoinfiltration analysis, transcription factors (TFs) and microRNA (miRNA) prediction, and drug prediction. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate the expression of biomarkers in sepsis and control group. RESULTS: There were 3,899 differential expressed genes (DEGs) in sepsis, with 141 related to glucose metabolism. Eleven hub genes were identified from the PPI network, and six biomarkers were selected through machine learning and area under the curve (AUC) validation. Notably, (OR = 1.0730, 95% CI: 1.0330-1.1160) and (OR = 0.9211, 95% CI: 0.8569-0.9902) had causal relationships with sepsis. The diagnostic nomogram based on these biomarkers showed good efficacy. Enrichment analysis suggested inhibits sepsis development, while promotes it. Drug prediction indicated strong interactions between and gigantol, and with echinatin. qRT-PCR showed reduced expression of and in sepsis, aligning with bioinformatics predictions. CONCLUSION: In summary, and are causally associated with sepsis, showing diagnostic potential. may inhibit sepsis development, while may promote it. These findings provide valuable insights for sepsis diagnosis and therapeutic drug development.

摘要

引言:本研究旨在确定与脓毒症葡萄糖代谢相关的诊断和治疗生物标志物,因为高血糖和血糖波动会影响脓毒症的进展。 方法:使用多种方法分析来自公共数据库的数据集,包括差异表达分析、蛋白质-蛋白质相互作用(PPI)网络筛选、机器学习算法和孟德尔随机化。建立了列线图模型,并通过富集分析、免疫浸润分析、转录因子(TF)和微小RNA(miRNA)预测以及药物预测来探索生物标志物的功能。进行定量逆转录-聚合酶链反应(qRT-PCR)以验证脓毒症组和对照组中生物标志物的表达。 结果:脓毒症中有3899个差异表达基因(DEG),其中141个与葡萄糖代谢相关。从PPI网络中鉴定出11个枢纽基因,并通过机器学习和曲线下面积(AUC)验证选择了6个生物标志物。值得注意的是,(OR = 1.0730,95%CI:1.0330 - 1.1160)和(OR = 0.9211,95%CI:0.8569 - 0.9902)与脓毒症存在因果关系。基于这些生物标志物的诊断列线图显示出良好的效能。富集分析表明抑制脓毒症发展,而促进脓毒症发展。药物预测表明与大叶木兰醇有强烈相互作用,与虎刺素也有强烈相互作用。qRT-PCR显示脓毒症中表达降低,与生物信息学预测一致。 结论:总之,和与脓毒症存在因果关系,具有诊断潜力。可能抑制脓毒症发展,而可能促进脓毒症发展。这些发现为脓毒症诊断和治疗药物开发提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/82ca9851548c/JIR-18-10213-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/52044abd20bd/JIR-18-10213-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/18a4089b8681/JIR-18-10213-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/03f7fc815ac4/JIR-18-10213-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/871e9d213867/JIR-18-10213-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/55e10dd1cf8e/JIR-18-10213-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/3a907fde3a6c/JIR-18-10213-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/5f15885a76a3/JIR-18-10213-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/82ca9851548c/JIR-18-10213-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/52044abd20bd/JIR-18-10213-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/18a4089b8681/JIR-18-10213-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/03f7fc815ac4/JIR-18-10213-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/871e9d213867/JIR-18-10213-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/55e10dd1cf8e/JIR-18-10213-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/3a907fde3a6c/JIR-18-10213-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/5f15885a76a3/JIR-18-10213-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7d2/12318527/82ca9851548c/JIR-18-10213-g0008.jpg

相似文献

[1]
Combined Analysis of Transcriptome and Mendelian Randomization Reveals and as Biomarkers Related to Glucose Metabolism in Sepsis.

J Inflamm Res. 2025-7-30

[2]
Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning.

Reprod Sci. 2025-5-15

[3]
Unraveling the Molecular Nexus between Ankylosing Spondylitis and IgA Nephropathy: Insights from Mendelian Randomization and Bioinformatics Analysis.

Nephron. 2025-3-12

[4]
Combination of machine learning and protein‑protein interaction network established one ATM‑DPP4‑TXN ferroptotic diagnostic model with experimental validation.

Mol Med Rep. 2025-9

[5]
Bioinformatics and systems biology to identify underlying common pathogenesis of diabetic kidney disease and stenosis of arteriovenous fistula.

BMC Nephrol. 2025-7-1

[6]
Identification of biomarkers for Laryngeal squamous cell carcinoma through Mendelian randomization and integrated bioinformatics analysis.

Discov Oncol. 2025-7-18

[7]
Identification and validation of CKAP2 as a novel biomarker in the development and progression of rheumatoid arthritis.

Front Immunol. 2025-6-25

[8]
Exploration of biomarkers associated with histone lactylation modification in spinal cord injury.

Front Genet. 2025-7-2

[9]
Exploring of bladder cancer immune-related genes and potential therapeutic targets based on transcriptomic data and Mendelian randomization analysis.

Front Immunol. 2025-7-18

[10]
Deciphering the transcriptomic characteristic of lactate metabolism and the immune infiltration landscape in abdominal aortic aneurysm.

Biochem Biophys Res Commun. 2025-6-14

本文引用的文献

[1]
The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury.

Front Immunol. 2024-12-6

[2]
Identification of lipid metabolism-related biomarkers and prognostic analysis in geriatric patients with sepsis.

J Infect Dev Ctries. 2024-10-31

[3]
Unveiling the glycolysis in sepsis: Integrated bioinformatics and machine learning analysis identifies crucial roles for IER3, DSC2, and PPARG in disease pathogenesis.

Medicine (Baltimore). 2024-9-27

[4]
Echinatin alleviates sepsis severity through modulation of the NF-κB and MEK/ERK signaling pathways.

Biomed Pharmacother. 2024-10

[5]
Sepsis Biomarkers: Advancements and Clinical Applications-A Narrative Review.

Int J Mol Sci. 2024-8-19

[6]
Glycolysis and beyond in glucose metabolism: exploring pulmonary fibrosis at the metabolic crossroads.

Front Endocrinol (Lausanne). 2024

[7]
Nucleolin myocardial-specific knockout exacerbates glucose metabolism disorder in endotoxemia-induced myocardial injury.

PeerJ. 2024

[8]
Downregulation of HNF4A enables transcriptomic reprogramming during the hepatic acute-phase response.

Commun Biol. 2024-5-16

[9]
Protective effects of Wenqingyin on sepsis-induced acute lung injury through regulation of the receptor for advanced glycation end products pathway.

Phytomedicine. 2024-7

[10]
Gigantol, a promising natural drug for inflammation: a literature review and computational based study.

Nat Prod Res. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索