Suppr超能文献

通过量子力学/分子力学方法研究阿法替尼与表皮生长因子受体(EGFR)结合的热力学及机制

Thermodynamics and mechanism of afatinib-EGFR binding through a QM/MM approach.

作者信息

Kisku Anjali, Wahi Raghav, Mishra Raj Kumar

机构信息

Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi-221005 India

出版信息

RSC Med Chem. 2025 Jul 16. doi: 10.1039/d5md00354g.

Abstract

We compute the different thermodynamic interaction parameters between afatinib, a tyrosine kinase inhibitor, and the epidermal growth factor receptor (EGFR) protein found in the cell membrane of lung epidermal cells and primarily responsible for non-small cell lung cancer (NSCLC). We compare the interaction entropy component (-Δ) of the binding energy obtained through normal mode or Nmode analysis (NMA), interaction entropy (IE), and C2 methods. We observe a much closer value of the binding free energy of the hydrated complex (-19.86 kcal mol) with the experimental value (about -13.00 kcal mol) compared to those obtained through newly developed IE and C2 methods (about -32.96 kcal mol and -35.47 kcal mol, respectively). The present study with molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) shows the standard deviation of binding energies ( = 3.54 kcal mol) which is an indication of the convergence of binding entropy with a lower value of energy. Advancement in structural biology with appropriate simulation techniques is an essential feature to meet challenges in covalent drug discovery as such drugs have been used to treat various types of cancers.

摘要

我们计算了酪氨酸激酶抑制剂阿法替尼与肺表皮细胞膜中发现的、主要导致非小细胞肺癌(NSCLC)的表皮生长因子受体(EGFR)蛋白之间的不同热力学相互作用参数。我们比较了通过正常模式或正常模式分析(NMA)、相互作用熵(IE)和C2方法获得的结合能的相互作用熵分量(-Δ)。与通过新开发的IE和C2方法获得的值(分别约为-32.96 kcal/mol和-35.47 kcal/mol)相比,我们观察到水合复合物的结合自由能(-19.86 kcal/mol)与实验值(约-13.00 kcal/mol)更为接近。本分子力学/泊松-玻尔兹曼表面积(MM/PBSA)研究显示了结合能的标准偏差( = 3.54 kcal/mol),这表明结合熵在较低能量值时的收敛。运用适当的模拟技术推动结构生物学发展,是应对共价药物研发挑战的关键特性,因为此类药物已被用于治疗各类癌症。

相似文献

2
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.
Cochrane Database Syst Rev. 2016 May 25(5):CD010383. doi: 10.1002/14651858.CD010383.pub2.
3
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
4
Afatinib in the treatment of EGFR mutation-positive NSCLC--a network meta-analysis.
Lung Cancer. 2014 Aug;85(2):230-8. doi: 10.1016/j.lungcan.2014.05.007. Epub 2014 May 21.
5
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
6
In silico exploration of anticancer plant phytochemicals for EGFR-targeted lung cancer therapy.
Sci Rep. 2025 Jul 30;15(1):27809. doi: 10.1038/s41598-025-10412-4.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

本文引用的文献

1
Encoding Molecular Docking for Quantum Computers.
J Chem Theory Comput. 2023 Dec 26;19(24):9018-9024. doi: 10.1021/acs.jctc.3c00943. Epub 2023 Dec 13.
2
DGIdb 5.0: rebuilding the drug-gene interaction database for precision medicine and drug discovery platforms.
Nucleic Acids Res. 2024 Jan 5;52(D1):D1227-D1235. doi: 10.1093/nar/gkad1040.
3
Not Always Sticky: Specificity of Protein Stabilization by Sugars Is Conferred by Protein-Water Hydrogen Bonds.
J Am Chem Soc. 2023 Oct 25;145(42):23308-23320. doi: 10.1021/jacs.3c08702. Epub 2023 Oct 16.
4
Perspectives on Ligand/Protein Binding Kinetics Simulations: Force Fields, Machine Learning, Sampling, and User-Friendliness.
J Chem Theory Comput. 2023 Sep 26;19(18):6047-6061. doi: 10.1021/acs.jctc.3c00641. Epub 2023 Sep 1.
6
Advances in covalent drug discovery.
Nat Rev Drug Discov. 2022 Dec;21(12):881-898. doi: 10.1038/s41573-022-00542-z. Epub 2022 Aug 25.
8
On the Use of Interaction Entropy and Related Methods to Estimate Binding Entropies.
J Chem Theory Comput. 2021 Aug 10;17(8):5379-5391. doi: 10.1021/acs.jctc.1c00374. Epub 2021 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验