Hide Will, Thomas Joe
Mathematical Institute, University of Oxford, Andrew Wiles Building, OX2 6GG Oxford, UK.
Department of Mathematical Sciences, Durham University, Lower Mountjoy, DH1 3LE Durham, UK.
Commun Math Phys. 2025;406(9):203. doi: 10.1007/s00220-025-05369-4. Epub 2025 Aug 1.
We study the geometry and spectral theory of Weil-Petersson random surfaces with genus- and cusps in the large- limit. We show that for a random hyperbolic surface in with large, the number of small Laplacian eigenvalues is linear in with high probability. By work of Otal and Rosas [42], this result is optimal up to a multiplicative constant. We also study the relative frequency of simple and non-simple closed geodesics, showing that on random surfaces with many cusps, most closed geodesics with lengths up to scales are non-simple. Our main technical contribution is a novel large- asymptotic formula for the Weil-Petersson volume of the moduli space of genus- hyperbolic surfaces with geodesic boundary components and cusps with fixed, building on work of Manin and Zograf [31].
我们在大尺度极限下研究具有亏格和尖点的韦伊 - 彼得森随机曲面的几何与谱理论。我们证明,对于大亏格的(\mathcal {M}{g,n})中的随机双曲曲面,小拉普拉斯特征值的数量以高概率线性依赖于亏格。根据奥塔尔(Otal)和罗萨斯(Rosas)[42]的工作,该结果在乘以一个常数的意义下是最优的。我们还研究了简单和非简单闭测地线的相对频率,表明在具有许多尖点的随机曲面上,大多数长度至多为(L)尺度的闭测地线是非简单的。我们的主要技术贡献是基于马尼恩(Manin)和佐格拉夫(Zograf)[31]的工作,给出了具有(k)个测地边界分量和(n)个尖点且(k)固定的亏格为(g)的双曲曲面的模空间(\mathcal {M}{g,k,n})的韦伊 - 彼得森体积的一个新的大尺度渐近公式。