文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于精确胰腺分割和脂肪分数估计的双自注意力变压器U-Net模型。

A dual self-attentive transformer U-Net model for precise pancreatic segmentation and fat fraction estimation.

作者信息

Shanmugam Ashok, Radhabai Prianka Ramachandran, Kvn Kavitha, Imoize Agbotiname Lucky

机构信息

Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India.

Department of CSE, Manipal Institute of Technology, Bangalore, Karnataka, India.

出版信息

BMC Med Imaging. 2025 Aug 4;25(1):315. doi: 10.1186/s12880-025-01852-5.


DOI:10.1186/s12880-025-01852-5
PMID:40760015
Abstract

Accurately segmenting the pancreas from abdominal computed tomography (CT) images is crucial for detecting and managing pancreatic diseases, such as diabetes and tumors. Type 2 diabetes and metabolic syndrome are associated with pancreatic fat accumulation. Calculating the fat fraction aids in the investigation of β-cell malfunction and insulin resistance. The most widely used pancreas segmentation technique is a U-shaped network based on deep convolutional neural networks (DCNNs). They struggle to capture long-range biases in an image because they rely on local receptive fields. This research proposes a novel dual Self-attentive Transformer Unet (DSTUnet) model for accurate pancreatic segmentation, addressing this problem. This model incorporates dual self-attention Swin transformers on both the encoder and decoder sides to facilitate global context extraction and refine candidate regions. After segmenting the pancreas using a DSTUnet, a histogram analysis is used to estimate the fat fraction. The suggested method demonstrated excellent performance on the standard dataset, achieving a DSC of 93.7% and an HD of 2.7 mm. The average volume of the pancreas was 92.42, and its fat volume fraction (FVF) was 13.37%.

摘要

从腹部计算机断层扫描(CT)图像中准确分割胰腺对于检测和管理胰腺疾病(如糖尿病和肿瘤)至关重要。2型糖尿病和代谢综合征与胰腺脂肪堆积有关。计算脂肪分数有助于研究β细胞功能障碍和胰岛素抵抗。最广泛使用的胰腺分割技术是基于深度卷积神经网络(DCNN)的U形网络。由于它们依赖局部感受野,因此难以捕捉图像中的远距离偏差。本研究提出了一种用于精确胰腺分割的新型双自注意力Transformer Unet(DSTUnet)模型,以解决这一问题。该模型在编码器和解码器两侧都融入了双自注意力Swin Transformer,以促进全局上下文提取并细化候选区域。使用DSTUnet分割胰腺后,通过直方图分析来估计脂肪分数。所提出的方法在标准数据集上表现出色,DSC达到93.7%,HD为2.7毫米。胰腺的平均体积为92.42,其脂肪体积分数(FVF)为13.37%。

相似文献

[1]
A dual self-attentive transformer U-Net model for precise pancreatic segmentation and fat fraction estimation.

BMC Med Imaging. 2025-8-4

[2]
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.

J Med Imaging (Bellingham). 2025-3

[3]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[4]
Transformers for Neuroimage Segmentation: Scoping Review.

J Med Internet Res. 2025-1-29

[5]
Combination of 2D and 3D nnU-Net for ground glass opacity segmentation in CT images of Post-COVID-19 patients.

Comput Biol Med. 2025-6-20

[6]
.

Int Ophthalmol. 2025-6-27

[7]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[8]
A novel UNet-SegNet and vision transformer architectures for efficient segmentation and classification in medical imaging.

Phys Eng Sci Med. 2025-7-8

[9]
A CNN-transformer-based hybrid U-shape model with long-range relay for esophagus 3D CT image gross tumor volume segmentation.

Med Phys. 2025-7

[10]
A novel network architecture for post-applicator placement CT auto-contouring in cervical cancer HDR brachytherapy.

Med Phys. 2025-7

本文引用的文献

[1]
Large-scale multi-center CT and MRI segmentation of pancreas with deep learning.

Med Image Anal. 2025-1

[2]
An effective no-reference image quality index prediction with a hybrid Artificial Intelligence approach for denoised MRI images.

BMC Med Imaging. 2024-8-12

[3]
TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers.

Med Image Anal. 2024-10

[4]
A Comparison of CT-Based Pancreatic Segmentation Deep Learning Models.

Acad Radiol. 2024-11

[5]
Effects of three Huanglian-derived polysaccharides on the gut microbiome and fecal metabolome of high-fat diet/streptozocin-induced type 2 diabetes mice.

Int J Biol Macromol. 2024-7

[6]
Chronic Pancreatitis in a Large Developing Country: Temporal Trends of Over 64,000 Hospitalizations from 2009 to 2019.

Dig Dis Sci. 2024-8

[7]
HO-SsNF: heap optimizer-based self-systematized neural fuzzy approach for cervical cancer classification using pap smear images.

Front Oncol. 2024-5-1

[8]
Automated liver volumetry and hepatic steatosis quantification with magnetic resonance imaging proton density fat fraction.

J Formos Med Assoc. 2025-3

[9]
LiViT-Net: A U-Net-like, lightweight Transformer network for retinal vessel segmentation.

Comput Struct Biotechnol J. 2024-3-19

[10]
Automated pancreatic segmentation and fat fraction evaluation based on a self-supervised transfer learning network.

Comput Biol Med. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索