HO-SsNF:基于堆优化器的自系统化神经模糊方法,用于使用巴氏涂片图像进行宫颈癌分类。
HO-SsNF: heap optimizer-based self-systematized neural fuzzy approach for cervical cancer classification using pap smear images.
作者信息
Shanmugam Ashok, Kvn Kavitha, Radhabai Prianka Ramachandran, Natarajan Senthilnathan, Imoize Agbotiname Lucky, Ojo Stephen, Nathaniel Thomas I
机构信息
Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, India.
Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
出版信息
Front Oncol. 2024 May 1;14:1264611. doi: 10.3389/fonc.2024.1264611. eCollection 2024.
Cervical cancer is a significant concern for women, necessitating early detection and precise treatment. Conventional cytological methods often fall short in early diagnosis. The proposed innovative Heap Optimizer-based Self-Systematized Neural Fuzzy (HO-SsNF) method offers a viable solution. It utilizes HO-based segmentation, extracting features via Gray-Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP). The proposed SsNF-based classifier achieves an impressive 99.6% accuracy in classifying cervical cancer cells, using the Herlev Pap Smear database. Comparative analyses underscore its superiority, establishing it as a valuable tool for precise cervical cancer detection. This algorithm has been seamlessly integrated into cervical cancer diagnosis centers, accessible through smartphone applications, with minimal resource demands. The resulting insights provide a foundation for advancing cancer prevention methods.
宫颈癌是女性的一个重大关切问题,需要早期检测和精确治疗。传统的细胞学方法在早期诊断中往往存在不足。所提出的基于堆优化器的自系统化神经模糊(HO-SsNF)创新方法提供了一个可行的解决方案。它利用基于HO的分割,通过灰度共生矩阵(GLCM)和局部二值模式(LBP)提取特征。所提出的基于SsNF的分类器在使用赫勒夫巴氏涂片数据库对宫颈癌细胞进行分类时,准确率达到了令人印象深刻的99.6%。比较分析突出了其优越性,使其成为精确宫颈癌检测的有价值工具。该算法已无缝集成到宫颈癌诊断中心,可通过智能手机应用程序访问,资源需求极小。由此产生的见解为推进癌症预防方法奠定了基础。
相似文献
Comput Methods Programs Biomed. 2016-10-19
Comput Methods Programs Biomed. 2018-6-26
Technol Health Care. 2024
引用本文的文献
本文引用的文献
Cancer Cytopathol. 2024-5
Healthc Inform Res. 2021-10
Clin Gastroenterol Hepatol. 2022-4