Suppr超能文献

通过在树莓派上进行多任务学习实现实时面部识别。

Real-time facial recognition via multitask learning on raspberry Pi.

作者信息

Aboluhom Abdulatif Ahmed Ali, Kandilli Ismet

机构信息

Engineering Faculty, Electronics Department, Ibb University, Ibb, Yemen.

Electronics and Automation Department, Kocaeli University, Izmit, Turkey.

出版信息

Sci Rep. 2025 Aug 4;15(1):28467. doi: 10.1038/s41598-025-97490-6.

Abstract

This paper investigates the feasibility of multi-task learning (MTL) for facial recognition on the Raspberry Pi, a low-cost single-board computer, demonstrating its ability to perform complex deep learning tasks in real time. Using MobileNet, MobileNetV2, and InceptionV3 as base models, we trained MTL models on a custom database derived from the VGGFace2 dataset, focusing on three tasks: person identification, age estimation, and ethnicity prediction. MobileNet achieved the highest accuracy, with 99% in person identification, 99.3% in age estimation, and 99.5% in ethnicity prediction. Compared to previous studies, which primarily relied on high-end hardware for MTL in facial recognition, this work uniquely demonstrates the successful deployment of efficient MTL models on resource-constrained devices like the Raspberry Pi. This advancement significantly reduces computational load and energy consumption while maintaining high accuracy, making facial recognition systems more accessible and practical for real-world applications such as security, personalized customer experiences, and demographic analytics. This study opens new avenues for innovation in resource-efficient deep learning systems.

摘要

本文研究了在低成本单板计算机树莓派上进行多任务学习(MTL)以实现面部识别的可行性,展示了其实时执行复杂深度学习任务的能力。我们以MobileNet、MobileNetV2和InceptionV3作为基础模型,在从VGGFace2数据集派生的自定义数据库上训练MTL模型,重点关注三项任务:人物识别、年龄估计和种族预测。MobileNet取得了最高准确率,人物识别准确率为99%,年龄估计准确率为99.3%,种族预测准确率为99.5%。与之前主要依赖高端硬件进行面部识别多任务学习的研究相比,这项工作独特地展示了在树莓派等资源受限设备上成功部署高效MTL模型。这一进展在保持高精度的同时,显著降低了计算负载和能耗,使面部识别系统在安全、个性化客户体验和人口统计分析等实际应用中更易于使用和实用。这项研究为资源高效深度学习系统的创新开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验