Suppr超能文献

利用机器学习和高通量实验评估设计交叉反应性抗原。

Design of cross-reactive antigens with machine learning and high-throughput experimental evaluation.

作者信息

Chesterman Chelsy, Desautels Thomas, Sierra Luz-Jeannette, Arrildt Kathryn T, Zemla Adam, Lau Edmond Y, Sundaram Shivshankar, Laliberte Jason, Chen Lynn, Ruby Aaron, Mednikov Mark, Bertholet Sylvie, Yu Dong, Luisi Kate, Malito Enrico, Mallett Corey P, Bottomley Matthew J, van den Berg Robert A, Faissol Daniel

机构信息

GSK, Rockville, MD, United States.

Lawrence Livermore National Laboratory, Livermore, CA, United States.

出版信息

Front Bioinform. 2025 Jul 16;5:1580967. doi: 10.3389/fbinf.2025.1580967. eCollection 2025.

Abstract

Selecting an optimal antigen is a crucial step in vaccine development, significantly influencing both the vaccine's effectiveness and the breadth of protection it provides. High antigen sequence variability, as seen in pathogens like rhinovirus, HIV, influenza virus, complicates the design of a single cross-protective antigen. Consequently, vaccination with a single antigen molecule often confers protection against only a single variant. In this study, machine learning methods were applied to the design of factor H binding protein (fHbp), an antigen from the bacterial pathogen . The vast number of potential antigen mutants presents a significant challenge for improving fHbp antigenicity. Moreover, limited data on antigen-antibody binding in public databases constrains the training of machine learning models. To address these challenges, we used computational models to predict fHbp properties and machine learning was applied to select both the most promising and informative mutants using a Gaussian process (GP) model. These mutants were experimentally evaluated to both confirm promising leads and refine the machine learning model for future iterations. In our current model, mutants were designed that enabled the transfer of fHbp v1.1 specific conformational epitopes onto fHbp v3.28, while maintaining binding to overlapping cross-reactive epitopes. The top mutant identified underwent biophysical and x-ray crystallographic characterization to confirm that the overall structure of fHbp was maintained throughout this epitope engineering experiment. The integrated strategy presented here could form the basis of a next-generation, iterative antigen design platform, potentially accelerating the development of new broadly protective vaccines.

摘要

选择最佳抗原是疫苗开发中的关键一步,对疫苗的有效性及其提供的保护广度都有重大影响。在鼻病毒、艾滋病毒、流感病毒等病原体中所见的高抗原序列变异性,使单一交叉保护性抗原的设计变得复杂。因此,用单一抗原分子进行疫苗接种通常只能提供针对单一变体的保护。在本研究中,机器学习方法被应用于设计来自细菌病原体的抗原——因子H结合蛋白(fHbp)。大量潜在的抗原突变体对提高fHbp的抗原性构成了重大挑战。此外,公共数据库中关于抗原-抗体结合的数据有限,限制了机器学习模型的训练。为应对这些挑战,我们使用计算模型预测fHbp的特性,并应用机器学习通过高斯过程(GP)模型选择最有前景和信息量最大的突变体。对这些突变体进行了实验评估,以确认有前景的线索并完善机器学习模型以供未来迭代使用。在我们当前的模型中,设计的突变体能够将fHbp v1.1的特定构象表位转移到fHbp v3.28上,同时保持与重叠交叉反应表位的结合。对鉴定出的顶级突变体进行了生物物理和X射线晶体学表征,以确认在整个表位工程实验中fHbp的整体结构得以保持。这里提出的综合策略可以构成下一代迭代抗原设计平台的基础,有可能加速新型广泛保护性疫苗的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7b2/12319226/31d45bd76b23/fbinf-05-1580967-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验