Department of Informatics and Chemistry, University of Chemistry and Technology, Prague, Czech Republic.
R&D Informatics Solutions, MSD Czech Republic S.r.o, Prague, Czech Republic.
MAbs. 2022 Jan-Dec;14(1):2020203. doi: 10.1080/19420862.2021.2020203.
Despite recent advances in transgenic animal models and display technologies, humanization of mouse sequences remains one of the main routes for therapeutic antibody development. Traditionally, humanization is manual, laborious, and requires expert knowledge. Although automation efforts are advancing, existing methods are either demonstrated on a small scale or are entirely proprietary. To predict the immunogenicity risk, the human-likeness of sequences can be evaluated using existing humanness scores, but these lack diversity, granularity or interpretability. Meanwhile, immune repertoire sequencing has generated rich antibody libraries such as the Observed Antibody Space (OAS) that offer augmented diversity not yet exploited for antibody engineering. Here we present BioPhi, an open-source platform featuring novel methods for humanization (Sapiens) and humanness evaluation (OASis). Sapiens is a deep learning humanization method trained on the OAS using language modeling. Based on an humanization benchmark of 177 antibodies, Sapiens produced sequences at scale while achieving results comparable to that of human experts. OASis is a granular, interpretable and diverse humanness score based on 9-mer peptide search in the OAS. OASis separated human and non-human sequences with high accuracy, and correlated with clinical immunogenicity. BioPhi thus offers an antibody design interface with automated methods that capture the richness of natural antibody repertoires to produce therapeutics with desired properties and accelerate antibody discovery campaigns. The BioPhi platform is accessible at https://biophi.dichlab.org and https://github.com/Merck/BioPhi.
尽管在转基因动物模型和展示技术方面取得了最新进展,但将小鼠序列人源化仍然是治疗性抗体开发的主要途径之一。传统上,人源化是手动的、繁琐的,需要专业知识。尽管自动化工作正在推进,但现有的方法要么规模较小,要么完全是专有的。为了预测免疫原性风险,可以使用现有的人源化评分来评估序列的人源化程度,但这些评分缺乏多样性、粒度或可解释性。同时,免疫受体库测序生成了丰富的抗体文库,如Observed Antibody Space (OAS),提供了尚未用于抗体工程的增强多样性。在这里,我们展示了 BioPhi,这是一个开源平台,具有新颖的人源化(Sapiens)和人源化评估(OASis)方法。Sapiens 是一种基于语言模型在 OAS 上训练的深度学习人源化方法。基于 177 种抗体的人源化基准,Sapiens 可以大规模生成序列,同时达到与人类专家相当的结果。OASis 是一种基于 OAS 中 9 -mer 肽搜索的粒度细、可解释和多样化的人源化评分。OASis 以高精度分离了人和非人的序列,并与临床免疫原性相关。因此,BioPhi 提供了一个带有自动化方法的抗体设计界面,这些方法可以捕捉到天然抗体库的丰富性,从而产生具有所需特性的治疗药物,并加速抗体发现活动。BioPhi 平台可在 https://biophi.dichlab.org 和 https://github.com/Merck/BioPhi 访问。