Suppr超能文献

碳纳米管中的薄层行为。理解离子电子贡献。

Thin-Layer Behavior in Carbon Nanopipettes. Understanding the Iontronic-Electronic Contributions.

作者信息

Laucirica Gregorio, Crespo Gastón A, Cuartero María

机构信息

UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, Avda. Andres Hernandez Ros 1, 30107 Murcia, Spain.

Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-114 28 Stockholm, Sweden.

出版信息

Anal Chem. 2025 Aug 19;97(32):17659-17667. doi: 10.1021/acs.analchem.5c02834. Epub 2025 Aug 5.

Abstract

Nanopipettes with carbon-coated inner surfaces (carbon nanopipettes, CNPs) have attracted considerable attention due to their exceptional sensitivity and potential in electroanalytical applications. The nanoconfinement of the sample solution within the CNP facilitates a thin-layer electrochemical regime, in which ion and electron transferences are inherently coupled. This feature allows exhaustive oxidation/reduction of certain analytes within typical electroanalytical time scales, offering unprecedented opportunities for nanoscale sensing. Despite this promising advantage, a detailed understanding of how measurement dimensions and experimental conditions influence key electrochemical responses remains significantly underexplored. Effectively, conventional electrochemical methods frequently struggle with decoupling ionic and redox contributions, which are critical for understanding the performance toward optimal exploitation. For the first time, cyclic voltammetry (CV), numerical simulations, and electrochemical impedance spectroscopy (EIS) are combined to systematically investigate the interplay between ion transport and electron transfer in the electrochemical behavior of CNPs. CV experiments were used to assess essential parameters under varying electrolyte compositions, solution depths, and scan rates, achieving signal-to-noise ratio enhancements of over 10-fold and submicromolar detection of the redox couple at the rationalized conditions. Complementarily, it is demonstrated that EIS can resolve the nanofluidic behavior by deconvoluting iontronic and electronic contributions, opening an option to be investigated more extensively in future research. The present study not only provides insights into the unique thin-layer electrochemical behavior of CNPs but also establishes the feasibility of simultaneously obtaining iontronic and electronic information with a single setup. This dual capability is poised to advance both related applications, e.g., sensing, (bio)catalysis, imaging, and fundamental directions in nanoelectrochemistry.

摘要

具有碳涂层内表面的纳米移液器(碳纳米移液器,CNP)因其卓越的灵敏度和在电分析应用中的潜力而备受关注。样品溶液在CNP内的纳米限域促进了薄层电化学机制,其中离子和电子转移内在地耦合。这一特性使得某些分析物在典型的电分析时间尺度内能够进行彻底的氧化/还原,为纳米级传感提供了前所未有的机会。尽管有这一有前景的优势,但对于测量尺寸和实验条件如何影响关键的电化学响应,仍存在显著的认识不足。实际上,传统的电化学方法常常难以区分离子和氧化还原的贡献,而这对于理解性能以实现最佳利用至关重要。首次将循环伏安法(CV)、数值模拟和电化学阻抗谱(EIS)结合起来,系统地研究离子传输和电子转移在CNP电化学行为中的相互作用。CV实验用于评估在不同电解质组成、溶液深度和扫描速率下的基本参数,在合理条件下实现了信噪比提高超过10倍以及对氧化还原对的亚微摩尔检测。作为补充,研究表明EIS可以通过解卷积离子电子和电子贡献来解析纳米流体行为,为未来研究更广泛地开展研究提供了一个选项。本研究不仅深入了解了CNP独特的薄层电化学行为,还确立了用单一装置同时获取离子电子和电子信息的可行性。这种双重能力有望推动相关应用,如传感、(生物)催化、成像以及纳米电化学的基础研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58fa/12368838/9c20391b4362/ac5c02834_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验