Suppr超能文献

通过聚集诱导脂质反向折叠实现有效的RNA递送

Effective RNA Delivery with Aggregation-Induced Lipid Backfolding.

作者信息

Wang Guan, Wu Mengtong, Ye Juanjuan, Xu Yazhou, Chen Yuxiao, Ju Caoyun, Xu Xiao, Zhang Can

机构信息

State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Dadao, Jiangning District, Nanjing 211198, P. R. China.

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China.

出版信息

ACS Nano. 2025 Aug 19;19(32):29416-29429. doi: 10.1021/acsnano.5c07140. Epub 2025 Aug 5.

Abstract

Lipid nanoparticles (LNPs) currently serve as a leading platform for RNA delivery. In this field, endosomal escape of LNPs is a key challenge for efficient RNA therapies. Most current strategies focus on designing ionizable lipids to enhance interactions with endosomal membranes, promoting membrane fusion and RNA release. However, existing methods still rely heavily on time-consuming high-throughput screening, and no effective guidelines for rationally designing ionizable lipid structures have been established. In this study, we propose a lipid structure-based strategy for guiding the LNP formulation. We recommend using lipids with asymmetric hydrocarbon tails, exemplified by L-Ada, which consists of a long oleate chain and a short adamantane group. Through extensive all-atom molecular dynamics simulations, we demonstrate that these asymmetric molecules act as membrane-disrupting agents by inducing lipid back-folding, generating packing defects on the membrane surface that facilitate membrane fusion. To counterbalance the reduced membrane rigidity from significant asymmetry, we propose a formulation combining symmetric and asymmetric-tailed lipids. Our results show that the backfolding effect induced by adamantane aggregation can be effectively controlled by the lipid structure and composition. The optimized formulation, consisting of 20% L-Ada and 80% symmetric lipid L-Ste, achieves a favorable balance between packing defects and membrane rigidity, which is also validated by membrane fusion experiments. A simplified thermodynamic model is further proposed to explain these effects and provides specific guidelines for the design of those lipids. In summary, this study presents LNPs incorporating asymmetrically tailed lipids, demonstrating enhanced membrane fusion capabilities and providing a crucial foundation for the optimization of future LNP formulations.

摘要

脂质纳米颗粒(LNPs)目前是RNA递送的主要平台。在该领域,LNPs的内体逃逸是高效RNA疗法的关键挑战。当前大多数策略集中于设计可电离脂质以增强与内体膜的相互作用,促进膜融合和RNA释放。然而,现有方法仍严重依赖耗时的高通量筛选,且尚未建立合理设计可电离脂质结构的有效指导原则。在本研究中,我们提出一种基于脂质结构的策略来指导LNP制剂的制备。我们建议使用具有不对称烃尾的脂质,以L-Ada为例,它由一条长的油酸酯链和一个短的金刚烷基组成。通过广泛的全原子分子动力学模拟,我们证明这些不对称分子通过诱导脂质反向折叠充当膜破坏剂,在膜表面产生堆积缺陷从而促进膜融合。为了平衡因显著不对称导致的膜刚性降低,我们提出一种将对称和不对称尾脂质结合的制剂。我们的结果表明,金刚烷聚集诱导的反向折叠效应可通过脂质结构和组成有效控制。由20%的L-Ada和80%的对称脂质L-Ste组成的优化制剂在堆积缺陷和膜刚性之间实现了良好平衡,这也通过膜融合实验得到验证。进一步提出了一个简化的热力学模型来解释这些效应,并为那些脂质的设计提供具体指导原则。总之,本研究展示了包含不对称尾脂质的LNPs,证明了其增强的膜融合能力,并为未来LNP制剂的优化提供了关键基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验