Westbrook Robert J E, Levin Andrew J, Gao Wei, Bothra Urvashi, Pratik Saied Md, Fan Baobing, Lin Francis R, Zhang Qian-Qian, Ngo Khoa, Kaminsky Werner, Brédas Jean-Luc, Coropceanu Veaceslav, Jen Alex K-Y, Toney Michael F, Ginger David S
Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States.
Materials Science and Engineering, University of Colorado, Boulder, Colorado 80309, United States.
J Am Chem Soc. 2025 Aug 20;147(33):30199-30209. doi: 10.1021/jacs.5c08244. Epub 2025 Aug 5.
We engineer molecular packing in five derivatives of the nonfullerene acceptor Y6. Using transient absorption spectroscopy, we find evidence of the formation of a delocalized exciton in addition to the local exciton in neat films of the acceptors. Following selective photoexcitation of the acceptors in donor/acceptor blends with D18, we observe anion formation on the same timescale as in neat acceptor films, suggesting that D18 is a bystander to charge generation after photoexcitation of the acceptors. We quantify the recombination kinetics of the delocalized excitons with the monomolecular recombination constant () and find that both the hole transfer yield and the internal quantum efficiency in photovoltaic devices increase for acceptor films with lower . In A1, relatively localized excitons with a limited charge transfer character have fast recombination kinetics ( = 3.2 × 10 s), leading to the lowest IQE (83.7%). In T1, more delocalized excitons with stronger charge transfer character have slower recombination kinetics ( = 5.3 × 10 s), leading to a higher IQE (97.2%). Grazing incidence wide-angle X-ray scattering of π-π stacking regions reveals that the tendency to pack face-on is a key driver of exciton delocalization across acceptors with similar molecular packing. We anticipate that this newly identified structural lever will help propel organic photovoltaics toward 20% efficiency.
我们对非富勒烯受体Y6的五种衍生物进行了分子堆积工程设计。通过瞬态吸收光谱法,我们发现除了受体纯膜中的局域激子外,还存在离域激子形成的证据。在与D18的供体/受体共混物中对受体进行选择性光激发后,我们观察到阴离子形成的时间尺度与受体纯膜中的相同,这表明D18在受体光激发后是电荷产生的旁观者。我们用单分子复合常数()对离域激子的复合动力学进行了量化,发现对于具有较低的受体膜,光伏器件中的空穴转移产率和内量子效率都会提高。在A1中,具有有限电荷转移特性的相对局域激子具有快速的复合动力学( = 3.2 × 10 s),导致最低的内量子效率(83.7%)。在T1中,具有更强电荷转移特性的离域激子具有较慢的复合动力学( = 5.3 × 10 s),导致更高的内量子效率(97.2%)。π-π堆积区域的掠入射广角X射线散射表明,面朝上堆积的趋势是具有相似分子堆积的受体间激子离域的关键驱动因素。我们预计,这一新发现的结构杠杆将有助于推动有机光伏效率达到20%。