Suppr超能文献

基于人工智能的胸部计算机断层扫描在鉴别肺结节良恶性多学科治疗模式中的分析

Analysis on artificial intelligence-based chest computed tomography in multidisciplinary treatment models for discriminating benign and malignant pulmonary nodules.

作者信息

Liu Xian-Yan, Shan Fa-Cheng, Li Hui, Zhu Jian-Bo

机构信息

Department of Respiratory Medicine, Binzhou People's Hospital, Binzhou, Shandong, China.

Department of Radiotherapy, Binzhou People's Hospital, Binzhou, Shandong, China.

出版信息

Clinics (Sao Paulo). 2025 Aug 4;80:100734. doi: 10.1016/j.clinsp.2025.100734.

Abstract

OBJECTIVE

To evaluate the effectiveness of AI-based chest Computed Tomography (CT) in a Multidisciplinary Diagnosis and Treatment (MDT) model for differentiating benign and malignant pulmonary nodules.

METHODS

This retrospective study screened a total of 87 patients with pulmonary nodules who were treated between January 2019 and December 2020 at Binzhou People's Hospital, Qingdao Municipal Hospital, and Laiwu People's Hospital. AI analysis, MDT consultation, and a combined diagnostic approach were assessed using postoperative pathology as the reference standard.

RESULTS

Among 87 nodules, 69 (79.31 %) were malignant, and 18 (20.69 %) were benign. AI analysis showed moderate agreement with pathology (κ = 0.637, p < 0.05), while MDT and the combined approach demonstrated higher consistency (κ = 0.847, 0.888, p < 0.05). Sensitivity and specificity were as follows: AI (89.86 %, 77.78 %, AUC = 0.838), MDT (100 %, 77.78 %, AUC = 0.889), and the combined approach (100 %, 83.33 %, AUC = 0.917). The accuracy of the combined method (96.55 %) was superior to MDT (95.40 %) and AI alone (87.36 %) (p < 0.05).

CONCLUSION

AI-based chest CT combined with MDT may improve diagnostic accuracy and shows potential for broader clinical application.

摘要

目的

评估基于人工智能的胸部计算机断层扫描(CT)在多学科诊断与治疗(MDT)模式下鉴别肺结节良恶性的有效性。

方法

这项回顾性研究筛选了2019年1月至2020年12月期间在滨州市人民医院、青岛市市立医院和莱芜市人民医院接受治疗的87例肺结节患者。以术后病理为参考标准,评估人工智能分析、MDT会诊及联合诊断方法。

结果

87个结节中,69个(79.31%)为恶性,18个(20.69%)为良性。人工智能分析与病理结果显示中度一致性(κ = 0.637,p < 0.05),而MDT及联合诊断方法显示出更高的一致性(κ = 0.847,0.888,p < 0.05)。敏感性和特异性如下:人工智能分析(89.86%,77.78%,AUC = 0.838),MDT(100%,77.78%,AUC = 0.889),联合诊断方法(100%,83.33%,AUC = 0.917)。联合诊断方法的准确性(96.55%)优于MDT(95.40%)和单独使用人工智能分析(87.36%)(p < 0.05)。

结论

基于人工智能的胸部CT联合MDT可提高诊断准确性,并显示出更广泛临床应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a37/12374198/8617816d3178/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验